Duke Math Meet
Power Round
November 19th, 2005

There are multiple problems related to a common theme. Some of the later questions may require or be supplemented by the earlier questions. All answers must be in the form of a complete solution with proof.

Commuting Polynomials

It is well known that composition of polynomials is not, in general, commutative. For instance, if $f(x)=2 x$ and $g(x)=x+1$, then $f(g(x))=2 x+2$, but $g(f(x))=2 x+1$. However there are some polynomials which do commute; for instance, if $f(x)=x+3$ and $g(x)=x+4$ then $f(g(x))=g(f(x))=x+7$. In this round, we will investigate some special cases of polynomials that commute.

1. Let $f(x)=a x+b$ with $a \neq 0$ and b real numbers. Find all pairs of real constants c and d with $c \neq 0$ such that $g(x)=c x+d$ commutes with $f(x)$, that is $f(g(x))=g(f(x))$.
2. Let $f(x)=a x^{b}$ with $a \neq 0$ real and b a positive integer. Find all pairs of real numbers d and c with $c \neq 0$ such that $g(x)=c x^{d}$ commutes with $f(x)$.
3. Let $f(x)=a x+b$ with a and b real numbers, $a \neq 0$.
(a) Show that if $f(x)$ commutes with a polynomial $g(x)$ with degree of $g \geq 2$, then $a= \pm 1$.
(b) Take $g(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with $a_{n} \neq 0$ and $n \geq 2$. For $a=1$, show that if $f(x)$ commutes with $g(x)$ then $b=0$ so $f(x)=x$.
(c) For $a=-1$, again show that if $f(x)$ commutes with $g(x)$ then $b=0$ so $f(x)=-x$. Describe all polynomials which commute with $f(x)=-x$. Conclude that the only linear polynomial functions which commute with higher degree polynomials are x and $-x$.
4. Let $f(x)=x+2 \pi$.
(a) Find a non-polynomial function that commutes with $f(x)$.
(b) Show that there are infinitely many functions that commute with $f(x)$.
5. Let $\left\{T_{n}(x)\right\}_{n=0}^{\infty}$ be an infinite sequence of polynomials T_{n} defined by $T_{0}(x)=1, T_{1}(x)=x$, and $T_{n+2}(x)=2 x T_{n+1}(x)-T_{n}(x)$ for $n \geq 0$.
(a) Find $T_{2}(x)$ and $T_{3}(x)$.
(b) Show that $T_{2}(x)$ and $T_{3}(x)$ commute.
(c) Show that $\pm T_{n}(x)$ and $\pm T_{m}(x)$ commute.
6. Denote by $R_{q}^{(l)}$ the polynomial defined by $R_{q}^{(1)}=x P\left(x^{q}\right), R_{q}^{(n+1)}(x)=R_{q}^{(1)}\left(R_{q}^{(n)}(x)\right)$ for $n>1$, where $P(x)$ is an arbitrary fixed polynomial.
(a) If $q=2$, find suitable constants $c_{1} \neq 1$ and $c_{2} \neq 1$ such that $c_{1} R_{2}^{(l)}(x)$ commutes with $c_{2} R_{2}^{(m)}(x)$.
(b) In the general case, find all constants c_{1} and c_{2} such that $c_{1} R_{q}^{(l)}(x)$ commutes with $c_{2} R_{q}^{(m)}(x)$.
7. Let $f_{m}(x)=x^{m}$.
(a) Find all polynomials $g(x)$ of degree greater than two that commute with $f_{2}(x)$.
(b) Find all polynomials $g(x)$ of degree greater than two that commute with $f_{m}(x)$.
