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Abstract

The removal of pollutants such as sulfur dioxide (SO2) from industrial exhaust
before release into the atmosphere is of considerable environmental interest. One means
of removing SO2 is through a chemical reaction with water vapor in a porous filter
composed of specially-designed solid particles or fibers. A product of this reaction is
sulfuric acid which forms in the pore space of the filter. We discuss a mathematical
description of this chemical reaction and develop models for transport of SO2 in a
porous filter and for the accompanying fluid production. Our goal is to improve the
understanding of how transport and reaction processes occur and how the generation
of fluid impacts the effectiveness of the filter. Flooding, which occurs when fluid in
the pore space makes its way to the exterior of the filter, is of particular interest.
Mathematical and computational models developed here may aid in understanding the
underlying transport and reaction mechanisms and in improving filter efficiency.
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1 Introduction

The design of effective filters plays a key role in a wide variety of environmental, medi-
cal, textile and other industrial settings. Filters are designed with a target application
in mind and the mechanism(s) by which they function range from very simple to highly
complex. An example of a filter that is based on a simple mechanical/geometrical con-
cept is a fishing net – big fish get caught while small ones swim through the holes. In
contrast, the filters of interest in the present context rely on complex interactions and
transport of a multi-species gas through a reactive multiphase system whose geometry
may be a complex network of fibers or a random packing of particles. Mass transport
of multiple phases and multiple chemical species through such a network or porous
media by diffusion and/or advection along with the accompanying chemical reactions
must therefore be addressed in order to understand and optimize filter performance.

The particular situation of interest involves the removal of sulfur dioxide (SO2) from
an industrially-generated exhaust gas flowing into the outside environment through a
channel (e.g. a ‘smoke stack’) through the placement of a filter (or filters) inside the
channel. Consider a single filter whose exterior geometry is that of a 3D rectangular
solid with one dimension much thinner than the others. Rather than placing such a
filter across a channel in which the sulfur dioxide-carrying gas flows (a likely optimal
fish-catching orientation of a net in a flowing river) the idea here is to place an array
or stack of these thin filters (each separated by a certain distance from the one above
or below it) so that the channel flow is along the large surface area of the filter (see
Figure 1). The mechanism by which SO2 is removed from the gas flowing through the
channel involves (1) transport of SO2 (e.g. by diffusion) into each filter orthogonal to
the direction of the gas flow in the channel and (2) a chemical reaction of the SO2

with the filter’s carbon particles (or fibers) and water vapor to effectively remove SO2

from the flow. As described in more detail below, a product of this reaction is a
fluid – sulfuric acid – that occupies the pore space of the filter and has potential long
term consequences of significantly reducing the effectiveness of the filter by blocking
access of the reactant gas to catalyst sites on the solid particles and/or inhibiting or
eliminating the transport of SO2-carrying gas from the channel into the filter. The
notion of ‘flooding’ characterizes the situation in which a sufficient amount of fluid
is generated within the pore space of the filter and leads to the appearance of fluid
build-up on the outside of the filter.

The goal of the present project is to develop a mathematical framework for char-
acterizing fluid production and transport inside of a porous medium. Of particular
interest is the prediction of time scales and spatial profiles associated with flooding of
the filter pore space. We address three particular aspects of this problem. First, a de-
scription of the chemical reaction that involves the consumption of sulfur dioxide (SO2)
and the production of sulfuric acid (H2SO4) is given. Second, a network-based model
for reactant transport and fluid generation within the pore space is derived and some
preliminary calculations are presented. Third, a continuum model that characterizes
the filter as a porous medium in which multispecies/multiphase transport occurs is
developed and preliminary calculations are presented.
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Figure 1: This figure shows a sketch of the basic filter/channel geometry.

2 Modeling the Chemical Reaction: Oxidation

of Sulfur Dioxide

Our first step towards a working filtration model involves an understanding of the
chemical reactions that may occur within the filter. The description used here is based
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on the work of Govindarao and Gopalakrishna [5], who studied the oxidation of sulfur
dioxide in an aqueous environment of carbon catalysts. In this section we outline
details of a model for the chemical reaction involving SO2 and water vapor and the
eventual production of sulfuric acid H2SO4. The description below is intended to be
useful as a model for the reaction that occurs when SO2 invades the pore space of a
filter composed of solid carbon (catalyst) particles.

2.1 Assumptions

The derivation that follows is based on two key assumptions.

1. The diffusion is much faster than the reaction.

2. The energy for the oxidation is much larger than that of deactivation of catalyst
sites (oxidation 93.55 kJ/kmol, deactivation 21.4 kJ/mol) [5], so the deactivation
is faster than the reaction.

Assumption 1 implies that the concentrations are homogenous in each pore. How-
ever, chemical concentrations may vary from one pore to the next in the filter and
consequently there may be concentration gradients present on the scale of the filter.
Assumption 2 implies that the deactivation process occurs before other reactions and
impacts the number of active sites of carbon catalysts for reactions later on.

2.2 Catalyst Deactivation

The deactivation process is a chemisorption,

SO2(aq) + ω 
 ω ·SO2, (1)

where ω denotes the carbon catalyst and SO2(aq) denotes SO2 in aqueous solutions
as molecular form. We use SO2 for simplicity. Before deactivation, the activity of ω is
1, which means all the active sites are available. After deactivation, some active sites
become deactivated, i.e., they cannot catalyze the reaction. We should notice that the
deactivation process is a dynamic equilibrium, and the number of ω·SO2 changes if the
concentration of SO2 changes. However, since deactivation is faster than reaction, (1)
always reaches equilibrium before we consider reaction.

Suppose we consider a unit volume from now on. By equilibrium, we mean that

dNω·SO2

dt
= 0 (2)

where NA denotes the number of molecules of substance A.
Suppose the number of initial active sites is Nω0 , the forward reaction rate of (1)

is kf1 and the backward reaction rate of (1) is kb1. Then,

dNω·SO2

dt
= kf1NSO2Nω0 − kb1Nω·SO2 = 0

So
Nω·SO2 = α1NSO2Nω0 , (3)

where α1 = kf1/kb1. Hence, the number of available active sites is

Nωact = Nω0 −Nω·SO2 = Nω0 − α1NSO2Nω0 = (1− α1NSO2)Nω0
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2.3 Reaction

The reaction starts with ionization,

SO2 +H2O 
 H+ +HSO−3 (4)

Only those active sites can catalyze the reaction below,

HSO−3 + ω 
 ω ·HSO−3 (5)

ω ·HSO−3 +
1

2
O2 −→ H+ + SO2−

4 + ω (6)

Note that the number of ω involved in (5) is Nωact , i.e., available active sites.
Similarly to the catalyst deactivation discussion of the previous subsection, the

equilibrium (5) yields
Nω·HSO−

3
= α2NHSO−

3
Nωact , (7)

where α2 = kf2/kb2.
Suppose the reaction rate of (6) is k, then in unit volume,

dNSO2−
4

dt
= k ·Nω·HSO−

3
·N

1
2
O2
.

If we now substitute equation (3) and equation (7) into the expression above, we find

dNSO2−
4

dt
= k · α2 ·NHSO−

3
· (1− α1NSO2) ·Nω0 ·N

1
2
O2
.

Now we define that the activity of initial catalyst (before deactivation) is 1, which
is a very common assumption for pure solid and pure liquid. By definition, the activity
is a = Nω

Nω0
in a unit volume, which means Nω0 yields an activity of 1 on the right-hand

side.
In the chemical equilibrium equation, we usually use the thermodynamic activities

of the chemical species; that is, concentration for gas or substances in solution, activity
for liquid and solid (more information see wikipedia 1). We can convert the number of
substances into concentration or activity in the above equation, because we consider a
unit volume for all the relations and equations above. So

dC̃SO2−
4

dt
= k · α2 · CHSO−

3
· (1− α1CSO2) · 1 · C

1
2
O2
. (8)

Here CA is the concentration (mol · m−3) of substance A. For ease of notation we
have reused the variable names α1 and α2 in equation (8) but note here that they
now are interpreted as quantities with units mol−1 · m3 (whereas previously they had
units mol−1). The quantity C̃SO2−

4
denotes the SO2−

4 produced in equation (6) and is

described in more detail below after (9).
The last step of the reaction is

SO2−
4 + 2H+ 
 H2SO4. (9)

1https://en.wikipedia.org/wiki/Equilibrium constant
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This is also a statement of dynamic equilibrium and involves the generation of liquid
H2SO4 (sulfuric acid). Notice that in (9) the number of S(VI)2 is conserved; that is,
this involves a conversion between SO2−

4 and H2SO4. So

dC̃SO2−
4

dt
=
dCS(V I)

dt
.

Here
dC̃SO2−

4

dt
in (6) is not the overall rate of change of SO2−

4 , noticing that CSO2−
4

decreases after (9). The quantity C̃SO2−
4

minus the consumed amount of SO2−
4 in

equation (9) below would represent the real concentration of SO2−
4 . However, in the

present context we care more about S(VI), which consists of SO2−
4 and H2SO4, than

we do about the real concentration of SO2−
4 . Therefore, since S(VI) is conserved in

(9), as an estimate for the rate of change of concentration of S(VI) we use the rate of
change of the quantity C̃SO2−

4
.

In our project, we are concerned about the rate of change of the volume of liquid,
i.e., in a pore (with given void volume),

dVH2SO4

dt
=?

If we assume that (9) arrives at equilibrium much faster than the reaction (6), it
implies that there is a K̃ < 1 such that, when the total amount of SO2−

4 generated
in equation (6) is ÑSO2−

4
, then NH2SO4 = K̃ÑSO2−

4
. And we should notice that the

amount of SO2−
4 after the equilibrium (9) is

NSO2−
4

= ÑSO2−
4
−NH2SO4 ,

and by equilibrium,
α3NSO2−

4
N2

H+ = NH2SO4 ,

where α3 = kf3/kb3 is the equilibrium constant for (9). Then,

K̃ =
α3N

2
H+

1 + α3N2
H+

or, re-using the variable name α3 with an appropriate unit conversion for concentration,

K̃ =
α3C

2
H+

1 + α3C2
H+

considering any volume.
Therefore, the rate of change of sulfuric acid concentration is given by

dCH2SO4

dt
= K̃

dC̃SO2−
4

dt
=
kα2α3C

2
H+

1 + α3C2
H+

· CHSO−
3
· (1− α1CSO2) · C

1
2
O2

(10)

2S(IV) consists of SO2 and HSO−
3 . S(VI) consists of SO2−

4 and H2SO4. [5]
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2.4 Liquid Volume Generation

We further analyze equation (10) in order to obtain an equation for the rate of liquid
volume generated by the reaction. Since the ratio of SO2 is considered small in the
gas mixture, we can assume that CO2 is constant and CH+ is fixed. The dynamic
equilibrium statements in (4) and (9) indicate that

α3CH2SO4C
2
H+ = CSO2−

4
(11)

α4CSO2 = CH+ · CHSO−
3

(12)

where activity of H2O in the latter equation is 1. Equation (10) reduces to,

dCH2SO4

dt
= KCSO2(1− α1CSO2) (13)

where

K =
kα2α3α4CH+

(1 + α3C2
H+)

C
1
2
O2
.

To convert concentration Ck of species k to volume Vk of species k, note that two
ways to express the mass of species k in the total volume Vt are in terms of mass density
and concentration yielding

ρkVk = CkVvMk,

where ρk is the mass density of species k measured in a volume Vk of species k, Ck

is the concentration of species k (number of moles per void volume Vv) and Mk is
the molecular mass (mass of one mole) of species k. That is, the volume occupied by
species k is

Vk =
VvMk

ρk
Ck,

Define saturation (i.e. volume fraction) of liquid and gas phases

Sl =
VH2SO4

Vt
, Sg =

VSO2

Vt
,

where the total volume Vt = Vs + Vv is the sum of the solid volume and void volume.
To simplify notation we denote the liquid H2SO4 by superscript ‘l’ and gas SO2 by
superscript ‘g’. Differentiating V l with respect to time, using the volume/concentration
conversion formulas and equation (13) gives

Vt
dSl

dt
=
VvM

l

ρl
dC l

dt
=
VvM

l

ρl
·K · ρg

VvMg
VtS

g(1− α1
ρg

VvMg
VtS

g).

If we let

α =
α1Vtρ

g

VvMg
, κ =

ρgM l

ρlMg
· kα2α3α4CH+

(1 + α3C2
H+)

C
1
2
O2
,

then the liquid volume production can be expressed in terms of the gas saturation Sg

dSl

dt
= κSg(1− αSg). (14)

This expression reveals a dual role of the presence of SO2 for the generation of H2SO4.
First, the presence of SO2 is required for the reaction to proceed at all; this is repre-
sented by the first appearance of the term Sg indicating that without SO2 there would
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be no liquid generation. Second, the SO2 can bind directly to catalyst sites and reduce
the rate at which the reactions (6) and therefore (9), which produces H2SO4, can take
place. This effect is embodied in the term (1− αSg) in equation (14). This process as
a whole is schematically shown in Figure 2 in which SO2 is present in the gas phase,
plays a role in the production of HSO−3 (which promotes H2SO4 production), and can
bind to and deactivate catalyst sites (which inhibits H2SO4 production).

Another key issue that plays a role in the availability of catalyst sites is the dis-
tribution of the liquid phase (H2SO4) on the catalyst surface. The presence of this
liquid phase in contact with the solid particles can also block access to active catalyst
sites even if no deactivation of catalyst sites by direct binding of SO2 takes place. We
discuss this fluid-mechanical mechanism further in the next section where we formulate
a network-based model for the filter as a whole.

HSO3
-

HSO3
-

HSO3
-

HSO3
-

HSO3
-

active site

deactivated site

carbon 
catalyst

SO2

SO2

SO2

w.SO2

w

Figure 2: This figure shows some of the key features of the chemical reaction including
the dual role of sulfur dioxide (SO2) in the production of sulfuric acid (H2SO4). Sulfur
dioxide is present in the gas phase, plays a role in the production of HSO−3 (which promotes
H2SO4 production), and can bind to and deactivate catalyst sites (which inhibits H2SO4

production).
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3 A Two-Dimensional Network Model for the

Filter

In this section we now consider a catalyst layer (e.g. the filter) in the form of a packed
bed of particles characterized by a network of interconnected pores. The idea of this
model is to allow reactant gas exposed to the filter at one exterior boundary to diffuse
into the network, react on the particle surface and produce fluid that can partially or
completely fill the pore space.

As a model for chemical diffusion of a reactive gas into a two-dimensional porous
filter consider a set of N nodes indexed by i representing catalyst particles distributed
within a horizontally long and vertically thin rectangular domain. The cross section
of the filter to be modeled has a vertical thickness much smaller than its horizontal
length. We assume a line of symmetry within the filter representative of a periodic
‘stack’ of these filters placed in the flow (see Figure 3). A reactive gas flows horizontally
along one (long) side of the filter. There is no imposed flow or pressure jump across
the filter, however, gas transport by diffusion into the filter is expected to occur. Each
node i has associated with it a volume (per unit length) Vi. The volume is made up
of a reactive gas volume V g

i , a non-reactive gas volume V g2
i , a liquid phase volume V l

i

and a solid phase volume V s
i [the catalyst particle(s)] so that Vi = V g

i +V g2
i +V l

i +V s
i .

We assume that V s
i is fixed for a given cell but that the volumes of the other three

phases can evolve in time. We work in terms of saturations (or volume fractions)
Sg
i = V g

i /Vi, S
g2
i = V g2

i /Vi, S
l
i = V l

i /Vi and Ss
i = V s

i /Vi which have the property

Sg
i +Sg2

i +Sl
i +Ss

i = 1. Of interest in each cell is the liquid volume fraction Sl
i and the

reactive gas volume fraction Sg
i . In addition to these quantities we denote the initial

area (per unit length) of the solid catalyst in cell i by As
i .

An open question in this setting is the description of how the fluid produced by the
reaction is distributed within the network. We present one model that assumes that the
fluid produced is evenly distributed on the catalyst surface in the form of tiny spherical
droplets (capillary static shape) that adhere to the surface with a fixed contact angle.
This particular model for fluid distribution within the pore space necessarily becomes
invalid at the point at which a sufficient fluid volume is generated for coalescence of
the tiny drops to occur (of course coalescence or other fluid distribution configurations
may occur even sooner). The volume at which coalescence in this model must occur is
predicted as a function of the contact angle. These are described in more detail below.

3.1 Conservation Equations

The following are mass balance equations for cells i = 1, . . . , N that relate the rate of
change of liquid and reactive gas in a given cell to source/sink terms associated with
chemical reactions and flux/diffusion from neighboring cells. The model we present
here is inspired by the work of Sinha and Wang [6] although they consider a pressure-
driven flow from a boundary of the filter and do not incorporate the possibility of
a chemical reaction in the pore space. Related network models include those of El
Hannach and coworkers [3, 4]. Here we write

ρlVi
dSl

i

dt
= κSg

i (1− αSg
i )A(Sl

i) + ρl
∑
j∈Ni

Ql
ij , (15)
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Figure 3: This figure shows a sketch of the cross-section of particles in the network model.
Each pore can be thought of as representing a volume Vi composed of solid, liquid and gas
phases. Connectivity of one pore to the next can be specified in a computational setting.
For simplicity in the present work we consider pores on a regular grid with nearest-neighbor
coupling.

ρgVi
dSg

i

dt
= −

∑
j∈Ni

D(Sg
i − S

g
j )− κSg

i (1− αSg
i )A(Sl

i), (16)

where ρl is the density of the liquid phase, ρg is the density of the reactive gas phase, κ
is a rate constant that characterizes the reaction in which the reactive gas is consumed
and liquid is produced [see equation (14)], A(Sl

i) is the available area of catalyst which
we assume is a function of the amount of liquid present in the cell and how it this
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liquid is distributed throughout the cell (we discuss possible models for this quantity
below), Ql

ij represents the volume flux of liquid into cell i from the neighboring cells

j whose indices are denoted by Ni (we discuss possible models for Ql
ij below) and

D is a diffusion coefficient, which we assume for simplicity to be a constant. In the
continuum model section that follows, we shall allow the diffusion coefficient to vary
with the amount of liquid present. In the first equation, the liquid content in a given
cell may change due to the production of liquid from the reaction (which requires the
presence of the reactive gas and available catalyst surface area) and transfer of liquid
to/from neighboring cells. In the second equation the change of reactive gas volume
fraction in a cell is determined by diffusion of gas to/from neighboring cells and the
consumption of gas from the reaction. Note that the solid volume fraction in each cell,
Ss
i , is given initially and remains constant for all time and the non-reactive gas volume

fraction can be determined from the condition Sg
i + Sg2

i + Sl
i + Ss

i = 1 once the ODEs
for Sl

i and Sg
i are solved. In order to close this model we need to specify models for

the exposed solid area A(Sl
i) and the fluxes from the neighboring cells Ql

ij .
For initial conditions, we shall assume that initially all cells contain no liquid so

that Sl
i = 0 at time zero. Also, all cells that are not at the bottom of the filter have

Sg
i = 0. Those cells at the bottom of the filter exposed to the reactive gas flow have
Sg
i = 1 − Ss

i . The present network model is not coupled to dynamics occurring in an
adjacent channel (other than through the prescription of Sg

i in the boundary cells). In
principle, however, one could couple this network model to a chemical transport model
in the channel. We discuss such a model in the context of a continuum formulation in
more detail in later sections. In the computational model here a symmetry condition
(no flux) condition is imposed at the upper boundary of the computational domain
representing the center line of the filter.

3.2 Models for Fluxes from Neighbors and Cell Pressure

A model for Ql
ij , the transfer of fluid from neighboring cell j to cell i in general must be

determined. The model proposed by Sinha & Wang [6] – see their equations (6), (7) and
(8) – is based on the idea that a pressure is imposed at one boundary of their system
and so the fluid motion is driven by this external pressure. In our system we have fluid
generated within the system and no pressure gradient (pressure differences between
adjacent cells) to drive flow. The fluid phase redistributes, it would seem, based on
mass conservation principle, coupled in some way to capillary statics of fluid filling
void space created by hydrophobic particles. The quasi-static fluid invasion problem is
beyond the scope and constraints of the present study but has been addressed in the
literature (e.g. Cieplak & Robbins[2]).

A starting point that serves the purpose of describing early time behavior, before a
sufficient amount of fluid for transfer between cells is generated, is to consider the case
Ql

ij = 0. The behavior of the system with Ql
ij = 0 will serve as a basis for comparison

once a suitable model for Ql
ij is obtained.

3.3 Models for Available Area on Catalyst

The production of liquid in the chemical reaction requires that one address models
of how this liquid is distributed in each cell. In the sections that follow we describe
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possible models that relate the available surface area of catalyst to the volume fraction
of liquid Sl

i inside the cell.

3.3.1 Tiny Droplets form Uniformly on Catalyst Surface

Here we assume that the catalyst is hydrophobic so that at least for early times liquid
generated from the reaction distributes itself uniformly over the surface area As

i of the
cell in the form of small spherical-cap shaped droplets. If we assume that the surface
area of the catalyst As

i can be subdivided into w × w rectangular patches then the
number of such patches covering the surface of the catalyst is Npatch = As

i/w
2. We

assume that as liquid is produced at the surface of the catalyst it is distributed in
the form of a single liquid drop on each the the Npatch patches. Each drop has a fixed
contact angle θ with respect to the substrate surface and a volume Vdrop that can evolve
in time. We assume this configuration can be applied up to the point at which droplet
coalescence occurs through contact of neighboring droplets. At the end of this section
we compute the maximum droplet volume allowed before coalescence occurs and show
how this volume depends on the contact angle. Assuming such a distribution of liquid
in the form of tiny droplets on the surface of the catalyst we can relate the volume
fraction of liquid in the entire cell to the volume of an individual droplet

Sl
i =

NpatchVdrop
Vi

=
As

i

Viw2
Vdrop. (17)

Our objective below is to relate the catalyst surface area covered by a single droplet to
Vdrop and the contact angle θ. Then, summing each covered area over all the drops and
subtracting the result from the total solid surface area As

i gives the available catalyst
surface area A(Sl

i). We describe this procedure below.
Consider a planar surface subdivided into square grids of size w × w. Suppose

a liquid droplet of volume Vdrop is attached at the center of each of these squares.
Assuming the shape of this liquid droplet is determined by surface tension, the droplet
will have constant curvature and will take the form of a spherical cap. Denote by H the
height of the drop and R the radius of the droplet (i.e. the radius of the corresponding
sphere). The volume of this spherical cap is 1

3πH
2(3R − H). If we assume that the

droplet makes a contact angle θ ∈ [0, π] with respect to this horizontal surface we can
express the volume of the droplet as

Vdrop =
πR3

3
(1− cos θ)2 (2 + cos θ) . (18)

This droplet makes a circular contact with the substrate. If we denote by W the radius
of this circular contact we have

cos(θ − π/2) = sin θ =
W

R
, sin(θ − π/2) = − cos θ =

H −R
R

. (19)

It follows that the contact area can be expressed as

Acontact = πW 2,

= πR2 sin2 θ,

= π

(
3Vdrop
π

) 2
3
(

sin3 θ

(1− cos θ)2(2 + cos θ)

) 2
3

(20)
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If we now convert this to a total available area for reaction by subtracting from the
original solid surface area, As

i , the area covered by all Npatch drops whose contact
surface area is Acontact we find that

A(Sl
i) = As

i −
As

i

w2
Acontact,

= As
i −

As
i

w2
π

(
3Vdrop
π

) 2
3
(

sin3 θ

(1− cos θ)2(2 + cos θ)

) 2
3

, (21)

= As
i −

As
i

w2
π

(
3Sl

iw
2Vi

πAs
i

) 2
3
(

sin3 θ

(1− cos θ)2(2 + cos θ)

) 2
3

, (22)

= As
i

[
1− π

(
3Sl

iVi
πAs

iw

) 2
3
(

sin3 θ

(1− cos θ)2(2 + cos θ)

) 2
3

]
, (23)

= As
i

[
1− f(γi, θ)(S

l
i)

2
3

]
, (24)

where we have used the result Vdrop = Sl
iw

2Vi/A
s
i from equation (17) and we have

defined

f(γi, θ) = π

(
3γi
π

) 2
3
(

sin3 θ

(1− cos θ)2(2 + cos θ)

) 2
3

, (25)

where γi = Vi/(wA
s
i ).

In this scenario, there is a limit to the total volume of fluid that can be distributed
on a surface in the form of tiny droplets before they grow too large and coalesce in
some way. We can predict the critical volume for which this occurs. There are two
cases that one must consider here in terms of the contact angle depending on whether
the contact angle is greater than or less than π/2.

First, if θ > π/2 the widest point on the droplet occurs some distance above the
substrate. In this case, coalescence occurs when the droplet radius R meets or exceeds
w/2. We therefore define a critical droplet volume Vc as the maximum drop volume
that can be remain isolated from its neighbors on a uniform w × w grid

V c
drop =

πw3

24
(1− cos θ)2 (2 + cos θ) for θ > π/2 (26)

Second, if θ < π/2 the widest point on the droplet occurs at the substrate. In
this case, coalescence occurs when the droplet contact width W meets or exceeds
w/2. Recall that the droplet radius R is related to W through W = R sin θ. So,
when W = w/2 we have that R = w/(2 sin θ). Therefore, the critical droplet volume
(maximum drop volume before coalescence) is

V c
drop =

πw3

24

(1− cos θ)2 (2 + cos θ)

sin3 θ
for θ ≤ π/2. (27)

Figure 4 shows a scaled droplet volume 24V c
drop/(πw

3) as a function of contact angle
θ indicating that droplets with smaller contact angles will coalesce at smaller volumes
as compared to droplets with large contact angle. It follows that this model for A(Sl

i)
is only applicable as long as

Sl
i ≤

As
i

Viw2
V c
drop = O

(
As

iw

Vi

)
. (28)
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If we suppose that a typical pore is cubic with volume X3 and that the catalyst particle
has approximately those same dimensions so that As

i ∼ X2, then the formula given
above would suggest that the upper limit for liquid volume scales with w/X which we
expect to be quite small (spacing between catalyst sites relative to a typical particle
length scale). It would seem that this particular model for liquid distribution in the
pore space may not be valid for volumes of interest for phenomena such as flooding.

3.3.2 One Big Droplet Forms on Catalyst Surface

Another possible distribution of fluid within the cell corresponds to the volume of fluid
produced forming a solitary droplet that adheres to the catalyst surface with contact
angle θ. We have not calculated the resultant form of A(Sl

i) here but anticipate that
it has the property that the area monotonically decreases with Sl

i.

3.3.3 Liquid Forms but Detaches from Catalyst Surface

Here A(Sl
i) = As

i . That is, the available surface area is the original surface area and
remains constant despite formation of liquid. Presumably this is an idealized case
and may be useful as a reference case for understanding/interpreting other models for
A(Sl

i). This would somehow be the best case scenario – namely, liquid forms but does
not reduce the available surface area for reaction and consumption of SO2. Note that
the formation of liquid would tend to reduce the volume fraction of reactive gas Sg

i

and so in that way may indirectly inhibit the reaction. Eventually this model would
break down as there is only a limited amount of pore space within each cell and given
a sufficient volume of fluid the catalyst surface must become engulfed by the fluid. The
issue of reduction of diffusion pathways as more liquid forms must also be addressed.
We discuss this to some degree in the context of the continuum approach.

3.4 Preliminary Numerical Results of the Network Model

A two-dimensional pore network was set up on a rectangular grid to simulate the
gas saturation (SO2) and liquid saturation in the model filter. Pore properties were
uniform throughout the filter. A preliminary calculation is shown in Figure 5. Here
the filter is exposed to a high concentration of SO2 at the bottom boundary. Diffusion
through the filter pore space can be observed in the upper figure. The liquid saturation,
resulting from the chemical interaction of the SO2 with the catalyst sites, is shown and
follows the SO2 saturation. This model is not coupled to the gas flow in the channel
(exterior to the filter), however, one could in principle compute the flux of SO2 into
the filter as a means of estimating the efficiency of the filter in removing SO2 from the
surrounding environment. An avenue worthy of exploration in the present model is
the incorporation of pore size distribution in the filter. Optimization of the pore size
distribution may offer new insights for filter design.
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Figure 4: Dimensionless droplet coalescence volume as a function of contact angle assuming
an array of droplets of distributed on a rectangular w×w grid. Droplets with smaller contact
angles coalesce at smaller volumes while droplets with larger contact angles coalesce at larger
volumes.

4 Two-Dimensional Continuum Filter/Channel

Model

Here we consider the transport of reactive gas (SO2) through the open channels between
an array of porous filters and the subsequent chemical reaction and fluid generation

16



Gas Saturation

 

Water Saturation

Figure 5: This figure shows a preliminary result from the network model. In the upper
plot the saturation of SO2 is shown with higher values at the bottom near the boundary
exposed to the channel flow. In the lower plot the liquid saturation is shown to follow the
SO2 saturation.

within the filters. Numerical solutions of the model allow one to predict (1) the re-
duction in total amount of SO2 at the channel exit compared to the channel inlet and
(2) the time evolution and spatial distribution of fluid generation and SO2 concentra-
tion within the filter. The model is based on a continuum multi-species/multi-phase
characterization of the filter as a porous medium.
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4.1 Transport Theorem

It is useful to recall the transport theorem applied to a scalar quantity ψ defined on a
time-dependent volume Ω(t), which states that

d

dt

∫
Ω(t)

ψdV =

∫
Ω(t)

[
∂ψ

∂t
+∇ · (ψ~w)

]
dV, (29)

where ~w is the speed of displacement of the surface of Ω(t).

4.2 Conservation Equations for Multiphase System

We consider a fixed control volume Ω of a multiphase system that contains a represen-
tative sample of solid, liquid and gas phases. We denote the volume of Ω by VΩ which
is divided up into volume occupied by the solid, V s

Ω, volume occupied by the liquid, V `
Ω

and volume occupied by the gas V g
Ω . In the present continuum model we denote volume

fractions (or saturations) of each phase by φs = V s
Ω/VΩ, φ` = V `

Ω/VΩ and φg = V g
Ω/VΩ.

As in a standard continuum description, we treat these volume fractions as defined at
each point in space and time. It follows that everywhere in the system

φs + φ` + φg = 1. (30)

Global balances for solid, liquid and gas state that the rate of change of mass of a
particular phase in Ω is equal to the net mass flux of that phase through the boundary
plus the total production (or consumption) of the phase due to chemical reaction and/or
phase transformation

d

dt

∫
Ω
ρsφsdV = −

∫
∂Ω

~J0
s · n̂dS +

∫
Ω
Ṙprod

s dV, (31)

d

dt

∫
Ω
ρ`φ`dV = −

∫
∂Ω

~J0
` · n̂dS +

∫
Ω
Ṙprod

` dV, (32)

d

dt

∫
Ω
ρgφgdV = −

∫
∂Ω

~J0
g · n̂dS +

∫
Ω
Ṙprod

g dV. (33)

Here ρ`, ρs and ρg are mass densities of the liquid, solid and gas phases, respectively.
The mass fluxes for solid, liquid and gas phases are

~J0
s = ρsφs~us, ~J0

` = ρ`φ`~u`, ~J0
g = ρgφg~ug, (34)

where ~us, ~u` and ~ug are local velocities of the solid, liquid and gas phases, respectively.

The reaction terms Ṙprod
s , Ṙprod

` and Ṙprod
g represent production rates (or consump-

tion) of mass of a particular phase per unit volume due to chemical reaction or phase
transformation. Note that the reaction terms can be interpreted as redistributing mass
from one phase to another. For example, if we have a reaction that converts a certain
mass of gas to the same mass of liquid with no creation/consumption of the solid phase

then Ṙprod
s = 0 and Ṙprod

g + Ṙprod
` = 0.

In the general case, summing the global balances (31)–(33), applying the transport
theorem (noting that the boundary of Ω is fixed) and using the divergence theorem on
the surface integrals gives∫

Ω

[
∂ρ

∂t
+∇ · (ρ~u)

]
dV =

∫
Ω

(
Ṙprod

s + Ṙprod
` + Ṙprod

g

)
dV (35)
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where ρ = ρsφs + ρ`φ` + ρgφg is the total mass density and ~u is the barycentric (mass-
averaged) velocity defined by ρ~u = ρsφs~us + ρ`φ`~u` + ρgφg~ug. By conservation of total

mass we must have Ṙprod
s + Ṙprod

` + Ṙprod
g = 0. Therefore, recognizing that the control

volume Ω is arbitrary leads to the local statement of mass conservation

∂ρ

∂t
+∇ · (ρ~u) = 0. (36)

One can also express the mass fluxes relative to the barycentric velocity in the form

~J0
s = ρsφs~u+ ~JB

s ,
~J0
` = ρ`φ`~u+ ~JB

` ,
~J0
g = ρgφg~u+ ~JB

g , (37)

where ~JB
s = ρsφs(~us − ~u) (and similarly for liquid and gas) is the molecular mass flux

specified with respect to the barycentric frame. Individual local mass balances for
solid, liquid and gas phases are

∂(ρsφs)

∂t
+∇ · (ρsφs~u) = −∇ · ~JB

s + Ṙprod
s , (38)

∂(ρ`φ`)

∂t
+∇ · (ρ`φ`~u) = −∇ · ~JB

` + Ṙprod
` , (39)

∂(ρgφg)

∂t
+∇ · (ρgφg~u) = −∇ · ~JB

g + Ṙprod
g . (40)

For a closely related discussion see the textbook by Bird, Stewart and Lightfoot [1],
Chapter 19. Two special cases of the continuity equation (36) are discussed below.

• Solid–Liquid System with Freezing/Melting: Suppose φg = 0 so only solid
and liquid phases are present. Then φ` = 1− φs. Further assume that ρs and ρ`
are constants and that the solid phase is rigid so ~us = 0. Solidification or melting
indicates ∂φs/∂t 6= 0. It follows from the continuity equation (36) that

(ρs − ρ`)
∂φs
∂t

+ ρ`∇ · (φ`~u`) = 0. (41)

If we write ~U = φ`~u` as is standard in the description of fluid flow in porous
media where ~U is the Darcy velocity (volume flux) it follows that

∇ · ~U =

(
1− ρs

ρ`

)
∂φs
∂t

. (42)

This equation indicates that there is a nonzero divergence of the flow that is
generated from a change of phase if the solid and liquid densities are different.
This situation occurs during the solidification of alloys when mushy layers form
[7, 8].

• Gas → Liquid Reaction in a Rigid, Nonreactive Solid Matrix: This
example is more closely related to the present problem of a gas/liquid chemical
reaction in a rigid porous medium. Here we have a constant solid fraction φs and
no motion of the solid ~us = 0. Then ∂φg/∂t+ ∂φ`/∂t = 0. We assume constant
densities of each phase. The continuity equation (36) in this case reduces to

∇ · (ρ`φ`~u` + ρgφg~ug) = − (ρ` − ρg)
∂φ`
∂t

. (43)
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If one assumes that the creation of liquid from gas occurs with negligible motion
of liquid but a sufficient supply (motion) of gas it follows that

∇ · (φg~ug) = −ρ`
ρg

(
1− ρg

ρ`

)
∂φ`
∂t
≈ −ρ`

ρg

∂φ`
∂t

, (44)

where the last approximation follows if the gas phase is much less dense than
the liquid phase. Under the stated assumptions, this equation shows that when
the fluid phase is generated (e.g. by chemical reaction) there is a sink-like flow of
the gas that occurs on a time scale associated with the liquid phase production
amplified by the liquid to gas density ratio.

4.3 Conservation Equations - Filter

For the particular case of a porous filter in which gas carrying a certain concentration of
sulfur dioxide (SO2) can react in the presence of the carbon solid catalyst to produce
a liquid phase we can use the formalism described in the previous section with an
additional balance for the sulfur dioxide species in the gas phase as described in more
detail below. In this particular case the solid phase is assumed fixed in space and other
than acting as a catalyst for reaction is neither generated or consumed. Hence the
mass balance for the solid phase is identically satisfied [i.e. ρsφs is time-independent,

~us = 0 (solid is rigid) and Ṙprod
s = 0 (solid is non-reactive)]. Local liquid and gas mass

balances are

∂(ρ`φ`)

∂t
+∇ · (ρ`φ`~u) = −∇ · ~JB

` + Ṙprod
` , (45)

∂(ρgφg)

∂t
+∇ · (ρgφg~u) = −∇ · ~JB

g − Ṙ
prod
` , (46)

where we have used Ṙprod
` + Ṙprod

g = 0. As shown in the previous section, the continu-
ity equation follows as a consequence of the local individual balances for the phases.
Therefore, we can replace the gas mass balance with the continuity equation

∇ · (ρ~u) = ∇ · (ρ`φ`~u` + ρgφg~ug) = − (ρ` − ρg)
∂φ`
∂t

. (47)

In the present system we are interested in keeping track of the species SO2, which
we assume may be dissolved in the gas phase but is not present in either the liquid or
solid phase. Applying similar ideas as formulated in the previous section, we have the
global balance stating that the total amount of SO2 in the control volume Ω changes
due to a net mass flux in/out of the domain measured at the domain boundary and
by production (or consumption) of SO2 by chemical reaction within the volume. In
particular,

d

dt

∫
Ω
MSO2

CSO2
φgdV = −

∫
∂Ω

~J0
SO2
· n̂dS +

∫
Ω
Ṙprod

SO2
dV, (48)

where MSO2
is the molecular mass of SO2, CSO2

is the concentration (moles per

unit volume) of SO2, ~J0
SO2

= MSO2
CSO2

~u + ~JB
SO2

and Ṙprod

SO2
is the rate of SO2
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mass production per unit volume of gas. The corresponding local species balance is,
assuming constant molecular mass MSO2

,

∂(CSO2
φg)

∂t
+∇ ·

(
CSO2

φg~u
)

= − 1

MSO2

∇ · ~JB
SO2

+
Ṙprod

SO2

MSO2

. (49)

4.3.1 Summary of Filter Equations

In summary, the governing equations in the filter are

∂φ`
∂t

+∇ · (φ`~u) = − 1

ρ`
∇ · ~JB

` +
1

ρ`
Ṙprod

` , (50)

1

ρ`
∇ · (ρ~u) = ∇ ·

(
φ`~u` +

ρg
ρ`
φg~ug

)
= −

(
1− ρg

ρ`

)
∂φ`
∂t

, (51)

∂(CSO2
φg)

∂t
+∇ ·

(
CSO2

φg~u
)

= − 1

MSO2

∇ · ~JB
SO2
−
Ṙprod

`

MSO2

. (52)

where φg = 1−φs−φ`. Here we have made the assumption that the production of liquid

results from the consumption of an equal mass of SO2 and so Ṙprod

SO2
= Ṙprod

g = −Ṙprod
` .

Once the fluxes ~JB
` and ~JB

SO2
along with the chemical reaction rate term Ṙprod

` are

specified, the three equations given here involve the unknown liquid volume fraction
φ`, the barycentric velocity ~u and the sulfur dioxide concentration CSO2

. Further
information must be provided to determine the velocity ~u.

The chemistry outlined earlier and the result in equation (14) suggests the following
plausible model for reaction term:

Ṙprod
` = kCSO2

(
1− αCSO2

)
A(φ`), (53)

where k is a rate constant, the term 1− αCSO2
represents the effect of sulfur dioxide

that directly binds to catalyst sites and as a consequence inhibits the reaction that
produces the liquid (sulfuric acid) and A(φ`) is the available area for the reaction whose
dependence on the liquid fraction φ` suggests another mechanism that may inhibit the
reaction – namely, the build up of liquid on the solid catalysts directly blocking access
to the catalyst sites on the solid. Possible models for A(φ`) were discussed previously.

As Ṙprod
` has units of mass/(time × volume), CSO2

has units of moles of SO2 per
unit volume and A(φ`) has units of area the reaction constant k must have units of
mass/(mole × time × area). The constant α has units of volume per mole.

For the molecular mass flux ~JB
SO2

we assume Fickian diffusion through the gas

phase and liquid phases (no diffusion through the solid)

~JB
SO2

= −(D`φ` +Dgφg)∇CSO2
, (54)

where D` � Dg for the case that diffusion through the liquid phase is much slower
than diffusion through the gas phase. Using φg = 1− φs − φ` it follows that

~JB
SO2

= −Dg(
D`

Dg
φ` + 1− φs − φ`)∇CSO2

, (55)

= −Dg

[
(1− φs)−

(
1− D`

Dg

)
φ`

]
∇CSO2

, (56)

= −DgDeff (φ`)∇CSO2
, (57)
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where Deff (φ`) = (1− φs)−Dφ` and D ≡ 1−D`/Dg. Note that D ≈ 1 if D` � Dg.
In fact, our previous assumption that the liquid phase carries no amount of SO2 would
suggest that we should use D = 1.

4.3.2 A Possible First Model for Transport in the Filter

As a possible first model to explore, consider the following simplifications of the filter
model summarized in the previous section. In the liquid fraction equation we assume
that the rate of change of liquid volume is dominated by the reaction term with the
advection and molecular mass transport negligible. We next assume that the diffusion
of sulfur dioxide is rapid (quasi static) but is balanced by the reaction term generating
liquid. With these assumptions, the velocity ~u decouples and the equations governing
the liquid volume fraction and concentration of sulfur dioxide in the filter are

∂φ`
∂t

=
k

ρ`
CSO2

(
1− αCSO2

)
A(φ`), (58)

0 = −Dg∇ ·
(
Deff (φ`)∇CSO2

)
+ kCSO2

(
1− αCSO2

)
A(φ`). (59)

4.4 Transport in the Channel Between Filters

A periodic array of filters of length L and thickness 2h are assumed to be spaced a
distance 2H apart. We denote x as the direction along the filter and z the coordinate
orthogonal to the filter. Although in reality the filters have finite length in the third
direction y we assume that we can model the process in a two-dimensional setting
with no variation in the y direction. As such the filter occupies the region 0 < x < L
and 0 < z < 2h although with symmetry conditions we need only to consider the
values 0 < z < h. The space between the filters is represented by 0 < x < L and
−2H < z < 0 where H is half the distance between filters. Again by symmetry we
need only to consider the values −H < z < 0.

Between the filters, which we denote as the channel, 0 < x < L and −H < z < 0
sulfur dioxide is transported by advection and diffusion

∂CSO2

∂t
+∇ ·

(
CSO2

~uchan

)
=

Dg

MSO2

∇2CSO2
. (60)

For simplicity we shall assume that ~uchan = (uc, 0, 0) is a given constant corresponding
to parallel plug flow although different assumptions in which it is determined by a full
Navier-Stokes simulation or a more simplified Poiseuille-type parallel flow assumption
in which it may depend on the z coordinate are possible. Upon entry to the channel
we assume that the concentration of sulfur dioxide is known CSO2

(x = 0) = Cin
SO2

. At

the channel–filter boundary we have the following boundary conditions

CSO2
(z = 0−) = CSO2

(z = 0+), (61)

∂CSO2

∂z

∣∣∣∣
z=0−

= Deff (φ`)
∂CSO2

∂z

∣∣∣∣
z=0+

, (62)

which represent continuity of species and species flux.
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4.5 A Possible First Model for Transport in the Channel

As a possible first model to explore and couple to the filter transport, consider the
situation in which the concentration of sulfur dioxide in the channel is quasi-static
with the transport dominated by advection along the channel (in the x direction) and
diffusion in the cross-stream (z) direction. That is,

uc
∂CSO2

∂x
=

Dg

MSO2

∇2CSO2
. (63)

This is effectively a heat equation with the variable x in place of the usual time variable.

4.6 A First Coupled Filter/Channel Model

With the additional assumption that both the filter and channel are thin compared to
the length h/L,H/L� 1 so that the Laplacian (diffusion) terms can be approximated
by diffusion in the z direction, we propose the following coupled filter/channel model.
In the filter, 0 < x < L and 0 < z < h we have

∂φ`
∂t

=
k

ρ`
CSO2

(
1− αCSO2

)
A(φ`), (64)

0 = −Dg
∂

∂z

(
Deff (φ`)

∂CSO2

∂z

)
+ kCSO2

(
1− αCSO2

)
A(φ`). (65)

In the channel, 0 < x < L and −H < z < 0 we have

uc
∂CSO2

∂x
=

Dg

MSO2

∂2CSO2

∂z2
. (66)

These equations are subject to boundary conditions at the filter/channel boundary

CSO2
(z = 0−) = CSO2

(z = 0+), (67)

∂CSO2

∂z

∣∣∣∣
z=0−

= Deff (φ`)
∂CSO2

∂z

∣∣∣∣
z=0+

, (68)

boundary conditions at the channel inlet

CSO2
(x = 0) = Cin

SO2
for −H < z < 0, (69)

and initial conditions

φ`(t = 0) = 0 for 0 < x < L and 0 < z < h. (70)

A dimensionless set of governing equations can be obtained as follows. Let

x̄ =
x

L
, z̄ =

z

h
, t̄ =

t

ρ`/(kA0Cin
SO2

)
, C̄ =

CSO2

Cin
SO2

, Ā(φ`) =
A(φ`)

A0
, H̄ =

H

h
,(71)

where A0 is a reference value for available catalyst surface area. It follows that the di-
mensionless governing equations, boundary conditions are initial conditions are (drop-
ping bars) given below. In the filter 0 < x < 1 and 0 < z < 1

∂φ`
∂t

= C (1− αC)A(φ`), (72)

0 = −R ∂

∂z

(
Deff (φ`)

∂C

∂z

)
+ C (1− αC)A(φ`). (73)
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where R = Dg/(kA0h
2). In the channel, 0 < x < 1 and −H < z < 0 we have

U
∂C

∂x
= R

∂2C

∂z2
, (74)

where U = ucMSO2
/(kA0L). These equations are subject to boundary conditions at

the filter/channel boundary

C(z = 0−) = C(z = 0+), (75)

∂C

∂z

∣∣∣∣
z=0−

= Deff (φ`)
∂C

∂z

∣∣∣∣
z=0+

, (76)

where Deff (φ`) = (1− φs)−Dφ` and D ≡ 1−D`/Dg (with φs a prescribed constant
representing the solid volume fraction in the filter), boundary conditions at the channel
inlet

C(x = 0) = 1 for −H < z < 0, (77)

and initial conditions for the liquid volume fraction in the filter

φ`(t = 0) = 0 for 0 < x < 1 and 0 < z < 1. (78)

As stated, the model applies to a situation in which the sulfur dioxide concentration
in the filter and channel are quasi-steady (dominated by diffusion in the vertical – cross
stream – direction and reaction) and adjust rapidly on the time scale in which water
builds up in the filter. The model will allow one to make a prediction about the value
of the sulfur dioxide concentration at the channel exit, C(x = 1, z, t) for −H < z < 0 as
well as the volume of water and its distribution found in the filter φ`(x, z, t) as a function
of time. The parameter α will measure the effect of reaction inhibition based on sulfur
dioxide occupying and deactivating catalyst sites. Using a non-constant function A(φ`)
will allow one to investigate the role of fluid build up and its assumed distribution on
the catalyst on the filter effectiveness. Further, the diffusion of sulfur dioxide will be
slowed directly through the dependence of the diffusion coefficient Deff (φ`) on the
liquid volume fraction.

4.7 Preliminary Numerical Results of the Continuum Fil-
ter/Channel Model

The model was solved using a finite difference scheme that, starting at t = 0 with
no fluid in the filter and given the inlet concentration at z = 0, computes the filter
boundary value problem first at x = 0, then passes information on the solute flux at the
filter/channel boundary to the channel PDE solver which advances the concentration
in the channel to the next grid point in the horizontal direction. The SO2 concentration
in the channel evaluated at the filter/channel boundary z = 0 at the new x position
is then used to compute the filter concentration from the filter BVP at the new x
position. This process is repeated until the filter and channel concentrations are known
throughout the full 2D spatial domain. At this stage, the liquid volume fraction is
updated everywhere in the filter via the liquid volume fraction ODE. The procedure
to update the concentrations in the filter and channel are then repeated with this new
liquid volume fraction distribution.
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For simplicity in the numerical solution of this problem and the preliminary results
shown below we have implemented the above model with A(φ`) = 1− βφ` as a simple
model that allows for the reduction of catalyst surface area with the build up of fluid,
measured by φ`, in the filter. This model, together with the effective diffusion coefficient
Deff (φ`) = 1 − φs − Dφ` and the factor (1 − αC) in the reaction term allows us to
independently assess the three important effects of (1) reduction in catalyst surface
area by build up of fluid in the filter, (2) the reduction in diffusion pathways due to
the reduction of gas volume fraction and increase in liquid volume fraction and (3) the
reduction of reaction rate due to the direct binding by SO2 to deactivate catalyst sites.

Figures (6)–(8) show some representative output from the above described algo-
rithm (code written in MATLAB). Parameters were chosen for illustrative purposes
only and were not intended to specifically match any particular known values or spe-
cific filter designs. Detailed descriptions of each figure are given in the captions. A key
message is that the coupled filter/channel model presented here is able to make predic-
tions about the efficiency of the filter and to make some assessments about the influence
of water generation on the filter efficiency. In particular, Figure (8) shows the ratio of
the integrated concentration at the channel exit and the integrated concentration at
the channel inlet. That is, we compute the quantity

1

H

∫ 0

−H
C(x = 1, z, t)dz. (79)

Note that the inlet concentration of SO2 is unity everywhere so the integrated inlet
concentration is simply H. Figure (8) shows that, as expected, the reduction of catalyst
sites directly by SO2 (measured by parameter α), or by liquid covering catalyst surface
area (measured by parameter β) or by a reduction in the diffusion rate by a lower
diffusion coefficient in the liquid phase in the filter, all make the filter less efficient.
The latter two effects that relate directly to water generation lead to a decrease in
filter efficiency over time.

5 Conclusions

We have developed mathematical and computational models aimed to improve the
understanding of filters that function by removal of pollutants such as SO2 by chemical
reaction. A limiting feature of these filters is the build-up of sulfuric acid (H2SO4), a
product of the reaction, inside the filter. We have presented work on three main fronts.
First, a detailed description of the central chemical reactions was presented. Second, a
computational model was developed for chemical transport and fluid generation in the
filter based on a network description of the filter and associated pore space. Third, a
continuum model was developed that couples these diffusive and reactive processes in
the filter to the flow and depletion of chemical concentration in the channel between
filters. Preliminary calculations have been given to demonstrate proof of concept of
these models. Further computational investigations of these models could be performed
to address questions about more specific filter geometries and characteristics.
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Figure 6: This figure shows SO2 concentrations in the filter (upper plot) and in the channel
(lower plot) and the liquid volume fraction in the filter (middle plot) at an arbitrary final
time of t = 0.1. This situation corresponds to one in which the generation of water has no
influence on the concentration field in either the filter or in the channel: α = 0 (no reduction
in catalyst sites due to SO2 occupying sites), β = 0 (no reduction in available catalyst
surface area due to fluid build-up in pore space) and D = 0 (no reduction in diffusion due
to water build-up – SO2 diffuses equally fast through both gas and liquid phases). This case
is presented as a reference case. The other parameters used in this particular simulation
are R = 1, U = 0.05, φs = 0.5, H = 4. Numerical discretization in the z direction used
51 evenly-spaced grid points in the filter and 51 evenly spaced points in the channel. The
number of time steps, starting from t = 0 was 50.
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Figure 8: This figure shows the integrated SO2 concentration at the channel exit relative to
the integrated SO2 concentration at the channel inlet as computed from equation (79). A
value of 0 would indicate that the SO2 was completely removed by the filter while a value
of 1 would indicate that no SO2 was removed by the filter. The black curve shows the case
α = β = D = 0 corresponding to no influence of water generation or catalyst site reduction
on the concentration of SO2. In this case there is no change in filter efficiency with respect to
time as the time variation of liquid in the filter, by choice of parameters, does not influence
the SO2 concentration. The red curve shows the case α = 0.1, β = D = 0 corresponding
to no influence of water generation but catalyst site reduction due to the presence of SO2.
Relative to the black curve, the filter in this case is less efficient. The green curve shows
the case α = 0.1, β = 0.1, D = 0 which extends the previous case to include the effect of
catalyst surface area reduction due to water generation in the filter. Here we see an increase
over time in the SO2 concentration at the channel exit. Finally, the blue curve shows the
case α = 0.1, β = 0.1 and D = 0.1 indicating the influence of a reduction in the effective
diffusion coefficient in the filter associated with a smaller diffusion coefficient in the liquid
phase compared to the gas phase. Parameters are the same as in the previous figure and
were intended to show general trends associated with these various effects rather than to
capture quantitative predictions on the filter efficiency for a realistic filter.
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