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1 Introduction

1.1 Overview

With current technology, we are able to utilize X-rays to obtain images of the human body. But an X-ray

cannot just obtain a ”picture” of internal objects inside the human body; how, then, do we obtain a legible

image? When an X-ray beam passes through an object at a given intensity, a certain amount of the rays are

absorbed or deflected by the object, which allows us to obtain information about the materials within the

object. By examining that difference between the intensity of the X-rays that enter and exit, we can draw

conclusions about the X-ray absorption of the materials in the body, which allows us to then reconstruct a

sense of the materials that the X-rays had to pass through.

Computed tomography, more popularly known as CT scanning, is a medical imaging technique that obtains

multiple X-ray measurements of the body from different angles and positions. With these measurements,

computer algorithms can reconstruct cross-sectional ”slices” of the body, as shown in Figure 1. Generally,

X-rays are a minimally invasive way of imaging parts of the human body, with the CT scan being a particular

applications that essentially collates multiple measurements into better, more high-construct results. How-

ever, the CT scan necessarily faces the mathematical problems related to reconstruction of an image from

X-ray measurements. Beyond noise from scanning, the resulting reconstruction will not be perfect because

mathematical reconstruction can only achieve an approximation of the actual object. Through understand-

ing the mechanics behind the CT scan, we can also better understand possibilities for improving computer

reconstruction.

In this paper, we will cover more of the background and properties of X-ray scanning, and discuss a number

of computational reconstruction techniques that are used to obtain the actual ”image” of a scanned object.

We will further discuss a number of the issues and benefits related to each technique, and lastly explore the

applications of these techniques to actual treatments using X-rays.
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Figure 1: Examples of images obtained from CT scans (Buzug, 2008)

1.2 Relevant properties of the X-ray

Like all electromagnetic waves, x-rays have properties of both waves and particles. In the form of a wave,

the energy of the beam is proportional to the frequency v by Planck’s constant: E = hv. X-rays have very

small wavelengths compared to visible light, and therefore have high frequencies and carry a high amount of

energy.

In the form of particles, the energy of the beam is proportional to the number of particles present, or the

intensity of the beam. When particles are shot through an object, some of them make it through while others

get stuck inside the object, resulting in a loss of energy to the material. This energy loss can be measured

by computing the difference in intensity of the x-rays before and after passing through the object, as shown

in Figure 2.

Beer’s Law states that the amount of energy lost to the material is proportional to the initial amount of

energy that the beam has. This proportionality is represented by negative µ, which leads to an ordinary

differential equation model. This will be discussed in more detail later on.

Figure 2: Energy transfer through an object

For the purposes of this paper, we will be assuming the usage of pencil-beam scanning, instead of other

common techniques such as fan-beam scanning. Intuitively, the X-ray beam is very thin, resembling a

pencil-beam, and each measurement gives a single value for the beam at its current position and angle. To
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obtain full coverage of the object, the scanner is shifted horizontally in small increments for a total designated

distance, then the scanner is rotated and this shifting is repeated. In most cases, this is repeated until all

necessary points of the object of concern are illuminated by at least 180◦. Mathematically, each pencil beam

of the X-ray obtains a single value for the integral of the attenuation coefficient (µ) along a certain path

through the object. Through shifting and rotating the scanner, we are able to obtain many values for these

integrals which we can then use to aid a more accurate reconstruction of the requisite object.

Figure 3: Pencil beam scanning setup (Buzug, 2008)

2 Mathematical Context

2.1 Ordinary Differential Equation Derivation

From Beer’s Law comes the idea that an ordinary differential equation can model the change in energy

associated with shooting a beam of x-rays through an object. The following equation can be used to represent

the proportionality between the initial energy and change in energy after passing through an object:

If − Ii
∆x

= −µIi

Here, the attenuation constant µ represents the relative rate at which energy is absorbed at a certain point

inside the material. µ is therefore a function of x, the position of the x-ray beam, and varies throughout the

object.

In terms of calculus, this equation can be rewritten as the following:

dI(x)

dx
= −µ(x)I(x)
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This equation is what’s known as an ordinary differential equation, and can be solved the following way:

dI(x)

I(x)
= −µ(x)dx∫ out

in

dI(x)

I(x)
= −

∫ out

in

µ(x)dx

[ln I(x)]
out
in = −

∫ out

in

µ(x)dx

ln I(out)− ln I(in) = −
∫ out

in

µ(x)dx

ln
I(out)

I(in)
= −

∫ out

in

µ(x)dx

We perform these operations in order to obtain the function µ(x), because theoretically if we can determine

the attenuation at points within the material, it can help us determine the properties of the material itself.

This is discussed in further detail in the next section.

Note that both I(in) and I(out) are measurable values, so the left hand side of this equation can be calculated

experimentally and used to solve for µ(x) on the right hand side.

2.2 Radon Transform

Ideally, we would know the exact instance of µ(x) in any CT scan: i.e. we would know the attenuation

coefficient at every position along the beam that passes through the object. If this was possible, we could

more easily construct an image of the object: if we know the specific µ values for various materials, we could

then know the span of each different material within the object. However, this is unmeasurable in reality.

Instead, we define a function g(x, y, θ), that represents the integral of µ along a certain direction as described

by the parameters.

µ(x, y, θ) 7−→ g(x, y, θ), where g is defined as follows:

g(x, y, θ) :=

∫ out

in

µ(x, y, θ)ds (1)

When we obtain x-ray measurements, we obviously do not just obtain values for µ along the line of the

x-ray beam. Instead, when the detector receives the X-ray beam after a decrease in intensity, we can draw a

conclusion about the overall µ that the beam must have passed through, which is represented in our function

g(x, y, θ).

In practice and particularly in the examples we will use, we cannot truly represent our x-ray measurements

with a continuous integral; instead, because we are scanning not continuously but in discrete steps, the

integral will instead be a sum over those discrete steps. A perfect scanner would be able to cover both

every scanning angle and obtain completely accurate values along every position at that scanning angle,

but in reality we are dealing with a discretized version of these concepts. Though this necessarily results

in an incomplete sampling of scanned objects, in practice this is usually sufficient to get a pretty good

reconstruction of an object.
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2.3 Parametrization of a Line

At a fixed angle θ, the straight-line path through the point (x0, y0) can be parameterized with a 2D vector

~v and parameter s, as shown in Figure 4. This parameterization is commonly referred to as point-slope form

and is defined as follows:

x(s) = x0 + s cos θ

y(s) = y0 + s sin θ

Note that (x0, y0) is the initial point, ~v = (cos θ, sin θ) is the slope of the line, and s ∈ IR. In the context of

the Radon Transform, this line parameterization can be used to modify equation (1) from above. The new

equation for g is as follows:

g(x, y, θ) :=

∫ out

in

µ(x0 + s cos θ, y0 + s sin θ)ds (2)

However, this parameterization can be generalized even further by using two vectors to define the path

instead of just one.

As before, the path is fixed at an angle θ with the horizontal, and the slope is given as ~v = (cos θ, sin θ). But

now, a position vector ~r points from the origin O to the point (x0, y0) such that it forms a right angle with

vector ~v, as shown in Figure 4.

Figure 4: 2D parameterization of a line (vector form)

Given this geometric setup, it can be deduced that ~r = (− sin θ, cos θ), and if the magnitude of ~r is defined

to be r, a real number, then a new equation for g can be written in terms of r and θ as follows:

g(r, θ) :=

∫ out

in

µ(−r sin θ + s cos θ, r cos θ + s sin θ)ds (3)

r and θ can be used to differentiate between the beams that pass through the object when using the pencil

beam technique. Each individual beam possesses a unique combination of the starting point and angle at

which it is shot, justifying our ability to define a complete parameterization in terms of these variables.
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Figure 5: Sinogram resulting from pencil beam scanning technique

Above, we have illustrated a brief example that displays the visualization of individual X-ray beams in terms

of these parameters. The image on the right is often referred to as a sinogram due to how objects can result

in sinusoidal patterns on the graph. In fact, if this method of pencil-beam scanning was performed on a

single dot of nonzero µ in the xy-coordinate system, the ”sinogram” would just appear to be a sine wave.

The sinogram displayed in the above right graph is ”built” from left to right, and is a display of what would

occur if the scanner was fully rotated around the scanned object shown on the left.

Figure 5 is a simple graphical example of a possible sinogram, and shows how more complex sinograms are in

effect ”layerings” of objects that appear on the sinogram because of their contrasting attenuation coefficients.

If we recall that a single dot would result in a single sine wave, we can then observe how each separate line

in the sinogram represents a distinct object that is represented by a sinusoidal trace.

Below, we have another graphical example of sinograms that resulted from a scan of an abdomen, with an

additional representation on a polar grid. Sinograms are ”brightest” when the corresponding beam detects

relatively higher attenuation. From the information obtained from X-ray scanning that is then displayed in

the Radon space, we are able to proceed with various techniques of reconstruction.

Figure 6: Cartesian and polar sinograms resulting from an abdominal CT scan (Buzug, 2008)
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3 Code Implementation of the Radon Transform

Figure 7: Radon Transform Implementation

For this implementation, we first considered a grid on the xy-plane with x and y values ranging from −
√

2

to
√

2. We then considered lines passing through this grid at various r and θ values and computed the line

integral using the function above. Finally, the results were then returned in a matrix consisting of these

values on the r − θ plane with the following results on the right:

Figure 8: Results of Radon Transform using the Shepp Logan Phantom
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4 Analytic Image Reconstruction

A CT scan performs a radon transform over a discrete image matrix representing the patient data. In order

to recover the image of the target tissue using analytical methods, it is necessary to know the inverse of the

radon transform.

4.1 Backprojection

Starting with the definition of the radon transform Rf : µ(x, y)→ g(r, θ).

g(r, θ) =

∫ ∞
−∞

µ(−r sin θ + s cos θ, r cos θ + s sin θ)ds

Choose a path p through the area of interest. The attenuation of the x-ray in one direction of p is the same

as the attenuation in the opposite direction. Define µ̄ as the constant average attenuation along a path.

Assume µ̄ can be used to approximate the function µ along the path, then simplify the radon transform:

g(r, θ) =

∫
p

µ̄ds

Integration of a constant implies g(r, θ) ∝ µ̄, however the constant of proportionality is often ignored, so

µ̄ = g(r, θ). To solve the attenuation at a single point (x, y), take the average of µ̄ along all paths crossing

through (x, y). The path angle varies from 0 to π.

µ̃(x, y) =
1

π

∫ π

0

g(r, θ)dθ

Solve for the parameter r in terms of the relevant variables x, y, θ using the Radon transform expressions for

x, y.

x = −r sin θ + s cos θ =⇒ x sin θ = −r sin2 θ + s cos θ sin θ

y = r cos θ + s sin θ =⇒ y cos θ = r cos2 θ + s sin θ cos θ

Therefore,

y cos θ − x sin θ = r(sin2 θ + cos2 θ) = r

Substitute to arrive at backprojection integral,

µ̃(x, y) =
1

π

∫ π

0

g(y cos θ − x sin θ, θ)dθ

The backprojection integral, which maps g(r, θ) → µ(x, y), from Radon space to image space, is necessary

for analytic reconstruction.

4.2 Backprojection Filtered (BPF)

Observing the reconstruction in figure 7, the µ̃ recovered from simply feeding the sinogram data into the

backprojection integral is blurry and inaccurate. This makes it insufficient for clinical use. In order to achieve
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Figure 9: Left: Sample image used to generate a sinogram, Right: Reconstructed image using only backpro-
jection

sharper image reconstruction and better feature identification, it is necessary use the Fourier transform to

reduce noise.

Start with the backprojection integral. Use the Radon transform integral to rewrite the backprojection

integral.

µ̃ =
1

π

∫ π

0

∫ ∞
−∞

µ(−r sin θ + s cos θ, r cos θ + s sin θ)dsdθ

Apply change of variables to rewrite in terms of s′ = s− (x cos θ + y sin θ). Rearrange

s = s′ + (x cos θ + y sin θ)

Earlier it was shown that r = y cos θ−x sin θ. Substitute for s and r in the integral above. After some work,

we get

µ̃(x, y) =
1

π

∫ π

0

∫ ∞
−∞

µ(s′ cos θ + x, s′ sin θ + y)ds′dθ

Now change variables from polar to cartesian. Let w = s′ sin θ and z = s′ cos θ. We know

dwdz = s′ds′dθ =⇒ ds′dθ =
1

s′
dwdz

Write s′ in terms of w, z:

w2 + z2 = s′2(cos2 θ + sin2 θ) = s′2

=⇒ s′ =
√
w2 + z2

Therefore,

µ̃(x, y) =
1

π

∫ ∞
−∞

∫ ∞
−∞

µ(z + x,w + y)
1√

w2 + z2
dwdz
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This is a 2-D convolution integral, hence apply the definition

µ̃(x, y) =
µ

π
∗

(
1√

x2 + y2

)

Apply the convolution theorem,

µ̃ =
1

π
Fµ · F

(
1√

x2 + y2

)
Solve for µ and use a reference table,

µ = F−1
[
µ̃(k1, k2) ·

√
k21 + k22

]
To perform BPF, first feed the sinogram into backprojection, then take the 2D Fourier transform, then

multiply by the frequency domain filter, and finally take the inverse 2D fourier transform.

Figure 10: Left: Sample image used to generate a sinogram, Right: Reconstructed image using BPF

4.3 Filtered Backprojection (FBP)

Another analytic reconstruction method makes use of the Fourier Slice Theorem. To derive the Fourier Slice

Theorem, start by taking the 1D Fourier transform of g with respect to r and substitute the integral form

of g.

Fg(k) =

∫ ∞
∞

g(r, θ)e−ikrdr

=

∫ ∞
∞

(∫ ∞
∞

µ(−r sin θ + s cos θ, r cos θ + s sin θ)ds

)
e−ikrdr

Using the change of variables x = −r sin θ+s cos θ and y = r cos θ+s sin θ, rewrite the integral. The Jacobian

of transformation is cos2θ − (− sin2 θ) = 1. Rewrite the integral

Fg =

∫ ∞
∞

g(r, θ)e−ikrdr
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=

∫ ∞
∞

∫ ∞
∞

µ(x, y)e−ik(y cos θ−x sin θ)dxdy

This is a 2D Fourier Transform. Therefore

F1D[g(k, θ)] = F2D[µ](k1, k2) = F2D[µ](−k sin θ, k cos θ)

Now starting with the equation

µ(x, y) = F−12D [F2D[µ]]

Apply definition of inverse 2D Fourier transform, then perform necessary substitutions and change to polar

coordinates.

µ(x, y) =
1

π

∫ π

0

∫ ∞
−∞
F2D[µ](−k sin θ, k cos θ)ei[−k cos θx+k sin θy]|k|dkdθ

Substitute the the Fourier Slice Theorem result for F2D[µ] and simplify by recognizing an inverse 1D Fourier

transform integral. The |k| term multiplies with the 1D Fourier transform of g, and acts as a low-pass filter

step.

µ(x, y) =
1

π

∫ π

0

F−11D [F1D[g](k, θ)|k|] (−x cos θ + y sin θ)dθ

Recognize this is the backprojection integral. Let Rf−1 represent the Radon transform inverse operator,

which is backprojection.

µ(x, y) = Rf−1
[
F−12DF1D[g](k, θ)|k|

]
The formula above demonstrates the difference between BPF and FBP is when the backprojection algorithm

is called. Recall in BPF the first step is to backproject, followed by taking the Fourier transform, filtering,

and taking the inverse Fourier transform. By contrast, in FBP the first step is taking a Fourier transform,

then filtering and taking the inverse transform, then calling backprojection. This subtle difference has

noticeable effects in improving image quality, as shown figure 10. In summary, two analytic methods of

Figure 11: Left: Sample image used to generate a sinogram, Right: Reconstructed image using only FBP

image reconstruction from a CT sinogram were discussed: BPF and FBP. BPF and FBP differ in the order

of backprojection and spectral filtering steps, which is shown to impact the reconstructed image quality.
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Figure 12: Side-by-side comparison of (Left to Right) Backprojection, BPF, FBP

5 Algebraic Reconstruction Technique (ART)

Given stability issues with regards to the inverse radon transform, the FBP and BPF are likely to be infeasible

given noises in the data g or discontinuity in µ. Hence, the resulting reconstruction is likely to have some

artificial effects. The ART is the most commonly use method to reduce these effects by creating a system

matrix and solving the linear equation Ax = b

5.1 Creating the System Matrix

For each ray p1, p2, p3, p4 shown in this diagram, each is associated with a value of g(r, θ) which is the re-

sult of the radon transformation. The distance of each ray through each grid is put into matrix A as a weight.

Figure 13: ART illustration

More generally, let µ be the absorption coefficient image with NxN pixels and we assume the µ to be constant

on each pixel. Then we assign µij to each pixel for 1 ≤ i, j ≤ N . For each line determined by r and θ, it

12



will pass through some of these pixels and take the path length inside each pixel to be pij . If the line does

not pass through the pixel, then pij = 0. So the equation for the (k, s)th line given by parameter (rk, θs) is

given by

∑
i,j µijp

k,s
ij = g(rk, θs)

where pij is determined by the straight line (rk, θs), and the entries of A(k,s),(i,j) will be pk,sij . Overall, A is

a MxN2 matrix where M ≥ N2 in order to create an overdetermined system with a unique solution. x is

the vectorized form of a NxN matrix while b is a Mx1 vector.

5.2 Solving the System

Given that the matrix A is often a singular matrix, the goal would be to find a least square solution and

minimize |Ax − b|2 rather than explicitly solving for x. For this the Kaczmarz’s method, an iterative algo-

rithm given by:

xk = xk−1 − Aix
n−1−bi
AiAT

i
ATi (*)

where Ai is the i-th row of the matrix A, and the iteration number k satisfies i=k mod N2 + 1

Proof : Left multiply both sides of (*) by Ai, we get the equation

Aix
k = Aix

k−1 − Aix
n−1−bi
AiAT

i
AiA

T
i

Cancelling and subtracting terms we get

Aix
k = bi

as required

5.3 Comparing ART and FBP

ART produces a much higher quality image as compared to FBP. ART also allows for more flexibility in

terms of one’s ability to alter the technique to improve image quality However, ART has a much longer

runtime and is more computationally expensive. During our trials, ART took around 30 minutes to run on

average, whereas FBP took only about 5 minutes on average. Hence, FBP is still the most popular method

used in industry.
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Figure 14: Comparison of images from ART and FBP

6 Interpolation

In order to improve the resolution of ART, we must change the way that the code simulates collecting the

attenuation data.

Currently, in order to simulate a single x-ray beam, the code basically ”drops” a bunch of points onto

the starting image, then figures out which cell of the matrix those points ”fell into”. Using the nearest

neighbor technique, each point is assigned the value of the cell it fell into, which makes the assumption

that the attenuation is constant throughout the entire cell. This assumption introduces error to the data,

however, because the attenuation of tissue in real life is continuous, not discrete. Thus, the goal is to make

it continuous using interpolation.

With interpolation, instead of using the nearest neighbor, the code operates on the assumption that the

point’s value is some linear combination of its four nearest neighbors’ values. Thus, linear algebra can be

used to better approximate the value at the point. We set up a system of equations using the following

bilinear approximation equation: p(x, y) = axy + bx + cy + d

Again, this is simply showing that the point p is some linear combination of its four nearest neighbors, each

given a weight a, b, c, or d. The linear system follows:
f(0, 0) = d

f(1, 0) = b+ d

f(0, 1) = c+ d

f(1, 1) = a+ b+ c+ d

Using this setup, the following Python code manually (and efficiently) solves the system and returns the

weights a, b, c, and d. From there, the point value is calculated using a weighted average.

Now, instead of assuming that each cell has a constant value, the code is able to construct a set of planes

between each cluster points, which allows for a more accurate approximation. However, the interpolation

method is not able to add any new information to the data. For instance, if a small feature was missed

during data collection, interpolation will not be able to fill in the gaps to find it. Overall though, it is still a

useful method for making the final CT images appear less granular, which is more pleasant to the eye.
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Figure 15: Interpolation code

7 Region of Interest Isolation

The next goal for improving ART is to be able to isolate just one region of interest (or ROI), because many

times when we scan the human body, we only care about a small portion of it, such as where a tumor is

located. Thus, we want to be able to increase the resolution of the image within that region of interest.

On the other hand, x-rays are very harmful to human tissue, so if we are targeting a tumor through radiation

therapy, we want to ensure that there’s no unnecessary damage to the surrounding tissue. Therefore, the

goal is to find the balance between too high of a dosage and too low of a dosage.

7.1 Naive Approach

The naive approach was to restrict the x-ray beams so that they only go through the ROI, and then use

regular ART to reconstruct the ROI. However, this led to an inaccurate reconstruction, which was very dark

and had a poor resolution. This was due to the fact that when we took the scan, the surrounding tissue was

interfering with the attenuation data, causing it to appear denser than it actually was. From here, we had to

create a more complex method–one that requires two CT scans–in order to achieve a better reconstruction.

7.2 Dual Scan Method

First, a low dose CT scan is performed, which generates a coarse image. This first scan does minimal damage

to the tissue while still allowing us to locate the region of interest.

From there, we isolate the beams that actually intersected with the ROI and calculate what percentage of
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Figure 16: Naive approach to ROI reconstruction

Figure 17: Dual scan method for ROI reconstruction

them fell inside the ROI (see red line segments in the second image.) That percentage of the line is called

α, and we intend to store these α values for later, because we assume that this ratio will stay relatively

constant between the first and second CT scans.

Next, a high dose CT scan is performed on only the region of interest. Now we interpolate the low-dose

alpha values so that there’s one alpha value for each beam. This indicates how much of that beam actually

falls within the ROI, which allows us to scale down the data from our high dose CT scan so that it’s only

accounting for the attenuation within the ROI. Finally, a modified version of ART is used to reconstruct the

ROI.
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7.3 Low Dose Interpolation Method

This second method first halves the resolution in each r and θ direction, resulting in the low dose CT having
1
4 the resolution or dose of the normal ART. The region of interest in blue was then isolated. High resolution

CT amounting to a resolution 4 times that of the low dose CT in the θ direction was then directed at the

region of interest. This resulted in a clearer region of interest but a less clear image outside the region of

interest as compared to the previous ART as expected. In particular, the white circular boundary of the

shape was not as clear.

Figure 18: Low Dose Interpolation Results

8 Inverse Planning

Figure 19: Image of Lungs with Tumor Region as ROI

Once the imaging is completed, the next phase is the treatment phase and the challenge is to optimize the

dose of radiation given to the patient during radiotherapy. The aim is to keep the radiation dose within a

certain limit in the ROI and below a certain limit outside the ROI, giving rise to the following system that

can be solved using linear programming techniques:

RLT ≤
∑
i λiBixT ≤ RUT (ROI)∑

i λiBixN ≤ RNT (Outside ROI)
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λi ≥ 0

where RLT and RUT are the lower and upper bounds of radiation dose for the ROI, RNT is the upper bound

of radiation dose for the non-ROI, Bi is the ith row of the B system matrix, λi is the radiation dose we are

trying to optimize. xT is the the indicator function written in the form of a vector with elements 1 indicating

the position of the ROI and 0 otherwise. The converse is true for xN .

This system is often solved using the Simplex Method. However, it is usually infeasible and penalty terms

would have to be added to create a solvable system as shown below:

RLT − α ≤
∑
i λiBixT ≤ RUT + β (ROI)∑

i λiBixN ≤ RNT + γ (Outside ROI)

λi ≥ 0

9 Conclusion

This project examined the mathematics of x-ray CT, radon transform, and various image reconstruction

techniques and created 2 new ways which would improve the scanning process- the dual scan method and

the low dose interpolation method. Given the better precision and greater flexibility of the dual scan method,

it would be reasonable to conclude that this method would likely form the basis for future research. Going

forward, we hope to further develop the methods for interpolation and finding the variation of µ within each

square grid. This would involve a more in depth study into how X-rays attenuate through different materials

and how PDE models can be used to model the variation of intensity of an X-ray through different matter.
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