Quantum Benchmarking on the [[4,2,2]] Code

Atsushi Hu, Joey Li, Rebecca Shapiro
July 2018

Abstract

For roughly two decades, theoretical quantum algorithms have been
known to provide significant speedup over classical techniques for certain
classes of problems. However, building reliable quantum computers in the
real world has been challenging due to problems of decoherence in compu-
tation. Thus, the field of quantum error correction is extremely important.
In this paper, we describe the results of two experiments conducted on
real quantum computers available through the IBM Q Experience that
experimentally examine the benefits of quantum error coding. We find
that carefully designed fault-tolerant operators for the [[4,2,2]] code de-
crease the infidelity of computation by a factor of ten, from 2.08 to 0.19.
We also confirm that in the [[4,2,2]] code, centralizing operators provide
no significant benefits over normalizing operators.

1 Real Randomized Benchmarking

While quantum error-correcting codes can theoretically reduce problems of de-
coherence, they have not been tested extensively on real quantum computers.
The first goal of this project was to benchmark the [[4,2,2]] CSS code on a 5-
qubit computer made available through IBM’s Quantum Experience in order to
show experimentally that computations in the encoded space could have lower
infidelity than computations in the uncoded space. In particular, we demon-
strate the advantage of fault-tolerant encoded operators across different lengths
of circuits. Following the experimental procedures outlined in [I], we replicated
their results, confirming a factor of ten decrease in infidelity, from 2.08 to 0.19,
when performing computation in the [[4,2,2]] code.

1.1 Experimental Design

The procedure for both the uncoded and encoded implementations was as fol-
lows:

1. Choose a set of circuits lengths {l;}. For each [;, sample [, — 1 logical
gates chosen randomly from the Realizable Group R(2), defined later,
and compose these into a circuit.

2. Add an appropriate inversion gate at the end so that the function of the
circuit is to perform a net identity operation.

3. Run the circuit through IBM’s quantum computer for 1024 shots, and
determine the success rate.

4. Repeat the previous steps while varying the logical input to the system by
compiling in 11, X1, IX, XX operators into the circuit. Run each circuit
with its specific set of inputs nine times.

5. Repeat the process again in the same manner while adding a phase gate
at the beginning of the circuit and an inverse phase gate at the end.
This changes the effect operator E, and gives information necessary for
calculation of the average gate fidelity.

Physical Gates Logical Gates
XIoX®lI X®l
XX®I®l I®X
A AE N ZI
ZI1ZeI1 I®Z

PRP@P®P | (Z®2)0(CZ)
SW APy, CNOT},
SWAP5 CNOTy,

Table 1: Set of Fault-Tolerant Gates

1.2 Implementation Details

The Realizable Group R(2) is the subgroup of real Clifford elements generated
by the gates specified in Table [l The randomly chosen gates in this paper
were sampled from R(2) for several reasons. First, R(2) is an orthogonal 2-
design. Second, R(2) is a small subset of the Cliffords, with only 576 elements
as compared to 1,152 in the Real Clifford group and 11,520 in the overall Clifford
Group on 2 qubits. Moreover, each element in R(2) is generated by an average
of 4 generators, as compared to 7 for the Real Clifford group. Finally, there are
simple fault-tolerant implementations of Realizable Group generators, as listed
in Table |1| above. For more thorough discussion of the choice of R(2) for this
benchmarking procedure, see [I].

All experiments were run on the IBM Q 5 Tenerife, or ibmgx4. IBM quantum
computer chips have a life cycle that is relevant to experiment accuracy; the
ibmgx4 is calibrated twice a day (at approximately 8AM and 8PM EST), and
reports the lowest readout error rate and gate error rate immediately after
calibration. Therefore, we tried to start experiments right after the machine
was calibrated. Moreover, since there is a limit on the job size, the runs were
broken down according to circuit lengths and multiple jobs were submitted.

Figure 1: connectivity of qubits on ibmqx4

The lengths of circuits we ran were 6, 15, 24, 42 (corresponding to 5,
14, 23, 41 logical gates). For each length, we compiled in 4 different inputs
(II,X1,IX,XX) and repeated the circuit 9 times for each compiler. We con-
ducted phased and unphased runs, and we did all of this for uncoded and en-
coded qubits, for a total of 4 x 4 x 9 x 2 x 2 = 576 experiments, each running
1024 shots [

The data gathered was used to determine an average success rate q. For
uncoded runs, § was determined for each run by dividing the number of correct
outputs by 1024. For encoded runs, § was determined for each run by dividing
the number of correct outputs by the number of outputs inside the code space
(results outside the code space were discarded as part of the error-detection
procedure). [I] proves that the average success rate can be fit into the model

G(m,E,p) = A+ b"B + c"C (1)

where m is the number of logical gates, which is equal to circuit length minus ,
p is the initial state, and F is an effect operator of a POVM. The value of A is
provided by [I] to be 0.25. B and C' are constants

B =Tr[Epy] and C = Tr[Ep_],
where pi = 1(p £ pT). Per [1], for two qubits, the average fidelity is given by
F(e) = (90 + 6¢+ 5)/20. (2)

In order to determine the values of b and ¢, we chose appropriate p to elim-
inate B and C, one at a time, in the equation. In the computational ba-
sis |00) (00|, p— = 0 and thus C = 0. This means that if the operation is
done in the computational basis, the success rate ¢ is modeled by the equation
d(m,]00) (00]) = 0.25 + b™B. To find out the value of C, we need to rotate
p- To achieve this, we apply a phase gate followed by a Hadamard gate. Since
phase gate cannot be applied fault-tolerantly in the code space, we apply a non-
fault-tolerant phase gate first and apply an encoded Hadamard gate. These are
inverted after the all the logical gates are applied and |00) is measured in the
normal way.

L The code used in the experiment is available at https://github.com/Octophi/quantum_
rb.

https://github.com/Octophi/quantum_rb
https://github.com/Octophi/quantum_rb

1.3 Results

Encoded vs Uncoded

Success rate (encoded, phased)

Success rate (encoded, unphased)

Figure [2] compares the effect of encoding the qubits. Based on calculations
using equation [1| and [2| the infidelity rate is Fi(¢) = 0.19% for the [[4,2,2]]
code and the infidelity rate is F'(¢) = 2.08% for the two physical qubitsﬂ This
difference was about a factor of ten and shows the significance of encoding.

However, since we conducted the post-selection of the results, it is unclear
how much improvement comes from the error-detecting ability of the [[4,2,2]]
code and how much comes from the CNOT gate in the codespace. To solve

Length

0.8 l 0.8
|

| QU N |
0.6] i 0.6
4 |]
0.4 s . 0.4
0.2 e 0.2
0.8 . : _!_ 0.8
0.6 H 0.6

0.4 4 _|__'_ 0.4

0.2 0.2
6 15 24 42

Figure 2: Encoded vs uncoded

Success Rate (uncoded, phased)

Success rate (uncoded, unphased)

2The data can be found online at https://github.com/Octophi/quantum_rb!

https://github.com/Octophi/quantum_rb

this problem, we conduct calculations in which the results that are not in the
codespace are not discarded. This creates a direct comparison between the per-
formance of codes with error detection and codes without error detection. This
leads to a calculated infidelity rate of 0.51%, which is only slightly higher than
the infidelity rate after discarding the results outside the codespace. Comparing
this result to the infidelity given by the uncoded circuits (2.08%), we can tell
that most of the improvement comes from error-detecting and a small amount
of improvement is from not using a noisy CNOT gate.

2 Benchmarking Centralizing versus Normaliz-
ing Solutions

When constructing a logical operator h on a code, we want to ensure that the
operator preserves the code space. Mathematically, this condition can be ex-
pressed succinctly by the statement h € Ny, (S), the normalizer of the stabilizer
group for our code within the N x N unitary matrices. However, this condi-
tion does not necessarily fix the subspaces constructed by the code. In order
to prevent this permutation of subspaces, we can impose the stricter condition
that h belong to Cy, (S), the centralizer Though theoretically this provides
more structure to syndrome measurements, it may come at the cost of a more
complex implementation.

[2] recently presented an algorithm for generating all normalizing and cen-
tralizing solutions for a Clifford gate associated with a given encoding scheme.
Using the MATLAB code presented in this paper to generate normalizing and
centralizing solutions, we benchmarked the performance of each type of imple-
mentation for the [[4,2,2]] code on the ibmgx4 quantum computer. Since the
[[4,2,2]] code is error-detecting and not error-correcting, we would expect that
centralizing implementations would show no advantage, since both normalizing
and centralizing implementations preserve the code space, and all results out-
side the code space were automatically discarded without regard to syndrome.
This is in fact, exactly what we found.

2.1 Experimental Procedure

The procedure was carried out as follows:

1. Choose a logical operator and obtain centralizing and normalizing imple-
mentations of the operator within the [[4,2,2]] code using the MATLAB
code at https://github.com/nrenga/symplectic-arxivi8a

2. For both the set of centralizing solutions and the set of normalizing solu-
tions, choose a representative circuit with the smallest number of gates.

3For a more thorough discussion of the theory behind centralizing and normalizing solutions
for logical operators, see section

https://github.com/nrenga/symplectic-arxiv18a

Additionally, consider the implementation of the operator in uncoded
space.

3. For each implementation of an operator, construct a corresponding circuit.

4. For each implementation and for each possible logical input, chosen from
{00,01, 10,11}, run the corresponding circuit 9 times for 1024 shots each,
taking the average of the success rates.

2.2 Implementation Details

Because the experiment was only meaningful when the shortest normalizing
implementation of an operator was distinct from the shortest centralizing im-
plementation of an operator, the only operator we benchmarked so far was the
CZ gate. Each circuit consisted simply of state preparation, the implemented
operator, and then measurement in the standard basis. Each operator had three
corresponding circuits: the centralizing implementation, the normalizing imple-
mentation, and the uncoded implementation. As with the first experiment, each
circuit was run 9 times for each of 4 inputs, and success rate was calculated out
of 1024 or out of the number of outcomes in the code space, as appropriate. All
experiments were run on the ibmqx4. Unlike with the real randomized bench-
marking procedure, the data was gathered at more scattered times throughout
the day, not necessarily right after IBM’s system calibrations. As it turned out,
the differences between the implementations were generally large enough to be
significant even accounting for potential issues of noise.

2.3 Results

Input States

Implementation 00 01 10 11 ‘ Avg
Uncoded CZ12 0.95 086 0.90 0.82 | 0.88
Normalized PioP3oPyoPy 0.89 0.87 0.90 0.87 | 0.88

Centralized Z4 o} CZ23 o CZ13 9] CZ12 0.72 0.75 0.74 0.75 0.74

Table 2: Success Rates for Implementations of C'Z Gate on Two Qubits

The data corroborated our expectation that centralizing gates would show
no inherent advantage over normalizing gates in the [[4,2,2]] code, as seen in
Table Rather, in every experiment, the simplest gate performed the best,
and this is to be expected, because generally, shorter depth circuits are less
likely to incur errors.

The data in these tables may be interpreted as showing that uncoded op-
erations do in fact show higher fidelity than encoded operations. This is likely
generally true for individual gates; however, a key point of quantum error cor-
rection which was demonstrated in the first experiment is that encoding is useful
precisely for long computations. Not only can operations be made fault-tolerant

and sequences of gates simplified when computations are conducted in encoded
space, but errors can be detected and/or corrected, which, as our other experi-
ment showed, has a significant impact.

2.4 Future Work

This experiment should be extended to error-correcting codes in order to test
the potential benefits of centralizing implementations. We made considerable
progress on building a framework for error correction coding in the [[5,1,3]] code,
following the flagged syndrome extraction procedure outlined in [3]. However,
as of the time of writing, such experiments cannot be run because IBM’s pub-
licly available quantum computers currently do not support measurement in
the middle of a circuit, a crucial component to error correction. Further inves-
tigation of this problem will be carried out when such functionality is added.
We propose that any such experiment compare fault-tolerant error correction
methods with non fault-tolerant ones, as well as compare normalizing operators
against centralizing operators, particularly over varying lengths of circuits.

References

[1] R. Harper and S. Flammia. Fault tolerance in the IBM Q Experience. ArXiv
e-prints, June 2018.

[2] N. Rengaswamy, R. Calderbank, S. Kadhe, and H. D. Pfister. Synthesis of
Logical Clifford Operators via Symplectic Geometry. ArXiv e-prints, March
2018.

[3] R. Chao and B. W. Reichardt. Quantum error correction with only two
extra qubits. ArXiv e-prints, May 2017.

[4] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information, 2002.

A Background

A.1 Introduction to Heisenberg Weyl

A fundamental algebraic group is the dihedral group Dy, the group of the sym-
metries of the square, which we can describe as the group with presentation

(X,Z|X?*=27°=1,XZ=27"'X).

We may check that if we take

0 1
x=0 4 2

Il
| ——|
O =
=
—_
| I

Figure 3: Symmetries of the Square

we may describe this group as a matrix group. Geometrically, X corresponds
to reflection in axis By and Z corresponds to reflection in axis A; in figure

An important mapping related to the group D, is the Walsh Hadamard
Transform, given by

- L1 1
HQ—HQT—Hzl—ﬂ{1 _1}7

which geometrically corresponds to rotation anticlockwise by 7/4 and then re-
flection in B;. This transform is important because it takes X to Z and vice
versa under the action of conjugation:

Hy'XH,=7 H,'ZH,=X.

Naturally, it also interchanges the eigenvectors Ay, Ay for Z with the eigenvec-
tors By, By for X. As an exercise, prove that the map g — H{lgHg describes
an automorphism of Dy.

A.2 Kronecker Products

Given a p x p matrix X = [z;;] and a ¢ x ¢ matrix Y = [y;;], the Kronecker
product X ® Y is defined by
1'11Y e Cl'le
XY = : : :
TpY ... xppY
The important idea of Kronecker products is that they allow us to “multi-
ply” together objects in a way that preserves the individual information of the

objects. A fundamental fact of Kronecker products that will repeatedly come
up is the following equality:

(z@y)(@' @y) = (v2") @ (yy') (3)

Now given a real or complex vector of length 2", we may index its coordi-
nates from left to right as 0 to 2™ — 1, and label the i*" coordinate by the binary
expansion of ¢. Then let e, be the standard unit vector with 1 in coordinate
v € F3' and 0 everywhere else.

For example, we have eg = (1,0),e; = (0,1), and

€110 = (00000010) = (O, 1) ® (0,0, 1, 0) —=e1 ®e; Meg.
We may prove that, in general, for binary m-tuple v = (V-1 ... v0),

€y = Eyp_y Qo X €y

A.3 Time Shifts and Frequency Shifts

Given a binary m-tuple a = (@, ... ag), define a 2™ x 2™ matrix D(a,0) by
D(a,0) = X" @--- @ X"

Then we may define the time shift group Xy == {D(a,0) | a € F5*}. The time
shift group is useful because we have defined it so that e, D(a,0) = e,14, which
you should prove as an exercise.

We may analogously define the frequency shift group. Let b = (b, ... bo)
and then define D(0,b) by

D(0,b) = 2" @ - @ Z".

The frequency shift group is Zy = {D(0,b) | b € F5'}, and we have the nice
property that e, D(0,b) = (—1)""¢,,.

Finally, given binary m-tuples a and b, define D(a,b) = D(a,0)D(0,b). Now
since Dy = {&+I,£X,+7Z,+X7Z}, we see that every matrix D(a,b) can be
written as a Kronecker product

TIm-1® gm-—2®@ - ®go

where g; € {I2, X, Z, XZ}. The Heisenberg Weyl group HWy, where N = 2™,
is the set of all matrices +D(a,b), +iD(a,b) where i = /—1.

We can prove a number of useful statements about the Heisenberg Weyl
group. Here are a few:

1. HWy is a group with respect to matrix multiplication and D(a, b)D(a’, V') =
(—=1)¥" V" D(a’ ') D(a, b).

2. D(a,b)T = (=1)®" D(a,b).

3. Elements of HWy have order 1,2, or 4, and we may characterize elements
of each order.

4. The conjugacy classes of HW) are all size 1 or 2.

5. A subgroup H of HWJy is normal if and only if —Iy € H.
6. HWy /(%il,) = F3™

Let E(a,b) = iabTD(a7 b) for all a,b € FJ'. Then we may prove several more
facts:

1. E(a,b) is Hermitian and F(a,b)? = Iy for all a,b € F3™
2. If E(a,b) and E(c,d) commute, then
E(a,b)E(c,d) = +E(a+c,b+d)
and if they do not commute, then
E(a,b)E(c,d) = £iE(a + ¢, b+ d).
3. The matrices ﬁE (a, b) form an orthonrmal basis for the real vector space
of N x N Hermitian matrices
4. The only eigenvalues of F(a,b) are £1.

5. Let Vi and V_ be the eigenspaces of E(a,b) corresponding to the eigen-
values 1 and —1 respectively. Then

dim(V,) = dim(V_) = 2™~ = N/2.

Finally, revisiting the Walsh Hadamard Transform, we see that we may
generalize the Walsh Hadamard Matrix by letting Hy = Ho ® --- ® Hy. Then
—_——

m times
we define Walsh functions as rows of Hy and their negatives, ie,

éb = ebHN.

Then we may prove that Walsh functions are eigenvectors of binary time shifts,
and thus are the analogue of spikes under the Walsh Hadamard Transform.

B Quantum Error Correction

Quantum computation is built on qubits, the quantum analogue of classical bits.
Physically, there are many different possible implementations for these qubits,
such as th espin of an electron or an ion. However, mathematically, a qubit is
a 2 dimensional Hilbert space over C. A pure state is a ray in Hilbert space,
usuall written as a unit norm complex vector

v = aey + Be; with o, 8 € C and |af* + 8> = 1.

Intuitively, we may think of the qubit as existing in some sperposition of the 0
state (eg) and the 1 state (e1).

10

A state of m qubits may be written as a vector in C*" = C? ® --- @ C2.
Then a pure state of m qubits would be written

x = Z ae, with o, € C and Z lo|? = 1.

veFy veERy

A von Neumann measurement of a quantum state begins with a resolution
of the identity, namely, ¢ Hermitian operators Pi,..., P; such that

pp =0 7T
P, ifi=j

and

P+ 4+ P = Igm.
When we measure v € C2" with respect to Py, ..., P, we obtain z = rﬁv]‘ﬂ-
with probability v P;u and we learn the index i of the projection that occurs.
Notice that von Neumann measurement cannot distinguish two states that are
scalar multiples of each other.

Entanglement refers to the phenomenon where states exist which cannot
be written as pure Kronecker products. The prototypical example is the Bell
state or EPR pair v = %(600 + e11). Entanglement is considered a resource
in quantum computation because it can provide some extra information. For
example, if we knew we had an EPR pair, and we measured the first qubit, we
would be able to determine the state of the second qubit without measuring it.

Gates in quantum computation correspond mathematically to unitary oper-
ators, and quantum circuits are simply compositions of quantum gates. The ad-
vantage of quantum computation lies in the idea of quantum parallelism, which
allows a quantum computer to explore exponentially many potential solutions
to a problem simultaneously. Roughly, the idea is that quantum algorithms
are designed to take in a uniform superposition as input, perform some some
sequence of unitary transformations to increase the probability of measuring a
desired solution from this superposition, and then measure the result. Quantum
algorithms such as Grover’s Algorithm and Shor’s Algorithm have been known
to provide significant speedup over classical techniques for over two decades.

The problem with quantum computing, however, is the prevalence of deco-
herence errors. Because errors inevitably build up over the course of a com-
putation, they can render a theoretically correct algorithm useless in practice
because of noise. Correspondingly, the field of quantum error correction has
received increasing attention over time.

In the quantum error model, we genreally assume that errors come from the
group HWy. While it may seem odd to focus on a discrete group of errors when
quantum errors are theoretically arbitrary, this assumption is justified because
the elements of HW forma basis for all errors that will occur in practice.

Theorem 1. Any code that corrects errors from HWy will be able to correct
errors in arbitrary models, assuming that the errors are mot correlated among
large numbers of qubits, adn that the error is small.

11

To see how an error-correcting code is designed, it is most instructive to
start with an example. Suppose we are asked to protect the information in a
single qubit, and only against single bit-flip errors. We may do this with the bit
flip code, as explained below.

We begin with the following map:

|0) — 000)
[1) — |111)

Thus, we have mapped a two-dimensional vector into eight-dimensional space.
For the bit-flip code, we then specify what we call our stabilizer group, which
we will take to be S = (Z1Z2,7Z5Z5). Notice each of our stabilizer genera-
tors is an element from the general error group, and furthermore, each splits
eight-dimensional space into equally-sized positive and negative eigenspaces.
Therefore, the using the two generators, we can split the eight-dimensional
space once into two four-dimensional spaces, and then again into four two-
dimensional spaces. Then based our encoding and choice of stabilizer elements,
our two-dimensional vector of information lies in one of the four two-dimensional
spaces. In particular it lies in the space that is the intersection of the positive
eigenspaces of the stabilizer generators, which we call the code space. Fur-
thermore, we have chosen our stabilizer generators carefully so that any single
bit-flip error will take the information into a unique subspace other than the
code space. Then by measuring our information to the stabilizer generators,
we can determine which subspace we lie in, and then apply correction terms as
appropriate to fix the error and return to the code space.

Measure
State D(000,110) | D(000,011) Diagnosis
a |000) + G]111) + + No error
a|100) + 5]011) - + Flip first qubit
«010) 4+ £]101) - - Flip second qubit
«|001) + 5]110) + - Flip third qubit

Table 3: Summary of bit flip code error correction procedure

We can use an analogous procedure to protect against phase flip errors.
The main difference is that we will choose our stabilizer to be S = (x125, xox3)
instead. Continuing, we might ask whether we can protect qubits from all errors
rather than just bit flip errors or just phase flip errors.

The answer of course, is yes, and there is a very natural procedure for doing
so based on what we have seen already. We simply begin by encoding our single
qubit with three qubits in the bit flip code. Following, we encode each of those
three qubits using another three qubits in the phase flip code. This encoding
procedure can be summarized in the following circuit:

This encoding scheme is called the Shor code, and was historically the first
indication that quantum error correcting codes analogous to those in classical
coding theory could be designed.

12

[rr]
) LH |
|0) D
|0) ®
0) —b (H]
0) &
0) <>
0) & H]
|0) <
|0) ®

Figure 4: Shor Code Encoding Circuit

B.1 Stabilizer Codes

Stabilizer codes generalize the idea of the bit flip code and Shor code. However,
construction of stabilizer codes is somewhat different. To construct a stabilizer
code, we begin by choosing some elements g1, ..., 9; € HWjy, which we call our
stabilizer generators. Then the stabilizer group is given by S = (g1, ..., ¢:), and
correspondingly, the code space is given by

Ve £ {l) | glv) = [¢) Vg € S}.

To check that an element does belong in V;, we clearly only have to check if it is
stabilized by each of the generators. This construction of S is useful because it
allows us to detect errors using the same method as the bit flip code: measure a
quantum state against each of the stabilizer generators, determine the subspace
we lie in, and then perform a quantum operation to correct as necessary.

This process of determining the subspace our information lies in is analogous
to syndrome decoding procedures in classical linear codes. In fact, stabilizer
codes are best thought of as the quantum equivalent of linear codes. For ex-
ample, there is also a valid interpretation of the generator matrix for stabilizer
codes. Using the map ~ given in Theorem 1, we may describe the stabilizer
generators as rows of a generator matrix. For example, for the bit flip code, our
generator matrix would be

since we may write z1z2 = D(000,110) and 2923 = D(000,011).

Then it is clear that the stabilizer group corresponds to the rowspace of
the generator matrix. This structure makes it easier to analyze the behavior
of stabilizer codes. As with linear codes, carefully choosing the elements of our
stabilizer generator is crucial to designing effective codes.

To discuss different quantum error correcting codes, it is useful to employ a
naming convention that is similar to the one for classical coding. We generally

13

describe a quantum code as a [[m, m — k, d]] code, where m refers to the
number of physical qubits the code is implemented on, k is the dimension of
the stabilizer group, and d is the distance of the code. While the significance of
m — k is not immediately obvious, note that the dimension of our information
qubits is equal to the total dimension of the physical space minus the dimension
of the stabilizer group. We must also define distance in quantum codes. We
choose the natural definition: the distance of a quantum code is the minimum
weight of an error taking one element of the code to another element of the
code, where weight is measured by the number of non-identity elements in an
error. Thus, for example, the reader should check that the Shor code described
above is a [[9,1,3]] code.

One other connection between quantum codes and classical codes worth
exploring is the quantum Hamming bound, the analogue of the sphere-packing
bound in classical coding. Recall that the sphere-packing bound states that for
an [[n,k,d]] code, we need

d—1
2
2" > 2. (")
7
1=0

In the case of quantum stabilizer codes, we see that the total dimension of our
physical qubits is 2™ and the dimension of our information qubits is 2™~ *. Then
the number of an elements in a t-sphere around a quantum state is Zf:o 31(i),
and so we get the bound

t om

=0

for a quantum [[m,m-k]] code which can correct ¢ errors.

In particular, we may consider the smallest number of physical qubits nec-
essary to protect a single qubit from single errors. Then we need t = 1 and
m — k = 1, and we obtain the inequality

2(3m +1) < 2™,

which implies m > 5, with equality precisely when m = 5. In fact, we can
indeed find a code which uses 5 physical qubits to protect 1 logical qubit from
single errors, which we call the [[5,1,3]] perfect code and which has stabilizer
(XZZX1,IXZZX , XIXZZ,ZXIXZ) . Analogous to classical codes, quan-
tum codes are called perfect when they satisfy equality in the quantum Ham-
ming bound.

B.1.1 CSS Codes

CSS codes, named after Calderbank, Shor, and Steane, are a special class of
stabilizer codes that are of particular interest in quantum computing for a few
reasons. First, CSS codes with specific error-correcting capabilities may be
constructed from known classical codes. Second, this construction provides a

14

systematic procedure for determining the the encoding schemes, which are not
always easy to determine for stabilizer codes. Finally, the stabilizer elements in
CSS codes are all pure products of X'’s and Z’s.

To construct a CSS code, one begins with two classical codes C; and C5 on
m bits such that C, C C; and C; and C3 both correct ¢ errors. Then we take
our stabilizer to be given by

_ Gt
“=le

where Gy is a generator matrix for Cy and G is a generator matrix for Cf-.

Theorem 2. This code corrects t errors.

Proof. To see this is true, consider the distance of the code. We want the
minimum weight vector (e, f) orthogonal, with respect to the symplectic inner
product, to everything in G. This gives the equation

o, “1E=B]

Then we must have that e € C; and f € C3-, and since both C; and C3 can
correct t errors, at least one of e and f must contain at least 2¢ 4+ 1 nonzero
entries, as desired. O

It should be clear from this construction why the stabilizer is made of ele-
ments with only X’s or only Z’s. To see how we may explicitly write down an
encoding scheme, let us consider a specific example.

Example B.1. [[4,2,2]] CSS Code

Take C; to be the classical [4,3,2] single parity check code and Cs to be the
[4,1,4] repetition code. We can take corresponding generators

10 01
Gi=10 1 0 1
0 011

Go=[1 1 1 1]

Notice that here we actually have Co = Cj-, which is not generally necessary
for CSS codes. Then we have the stabilizer generator matrix

G- 0000 T1 111
{11110 0 0 0f°
Because Cy C C4, we may form another generator matrix for C;/Cs, given
by

01 0 1
GC1/C2:[O 0 1 1:|'

15

Now we can provide an explicit encoding given by the map

G =+
\/@ Z |X C1/Co C>

ceCs

For example, the system |00) Would be encoded as (|0000> +[1111)) and the

system |10) would be encoded as —= (|0101> + |1010)) Wlth some effort, one can
check that this specified map Works in general by checking that the stabilizers
fix these states.

The [[4,2,2]] code specifically will reappear throughout the rest of this paper
and thus a full table of encodings is given for reference:

Information ‘ Encoded State
|00) %(|oooo> +|1111))
|10) 75(/0101) +[1010))
|01) %(moo) +10011))
|11) %(|o110> +(1001))

Table 4: Encoding Scheme for [[4,2,2]] Code

B.2 Classifying Errors

At this point, it is fruitful to stop consider what kind of errors can occur in a
stabilizer code. In the following discussion, it will be helpful to refer to the tree
of groups depicted in [2]. We classify our errors into three types:

e Inwisible Errors: Suppose an error occurs and it is drawn from the group
S. Then this error is in fact one of our stabilizer elements, and does not
affect our code at all.

e Indistinguishable Errors: Suppose an error occurs an it is drawn from
the group S*. Then because this error normalizes our stabilizer, a syn-
drome measurement will not indicate any error, though our data will have
changed. Indistinguishable errors cannot be fixed by syndrome measure-
ment.

e Correctable Errors: Suppose an error lies in HWy but not in S*+. Then
by syndrome measurement, we may detect the error, and have hope to
correct it.

In sum, there are a class of errors that cannot be corrected by stabilizer
codes. The goal is for our code to be effective enough in correcting the other
two types of errors to provide significant advantage over uncoded computations.

16

B.3 Implementing General Logical Operators

Before discussing how specifically to implement logical Cliffords, we can estab-
lish some conditions on general logical operators. When constructing a logical
operator on a code, we want to ensure that the operator preserves the code
space. In other words, given some logical operator h, we always want

gh|) = h|¥)
for all ¢ € S. Noting that ¢’ [¢)) = [)) for all ¢’ € S, this condition may be
rewritten as -

ghly) = hg'[¢)
and so we need that for all g € S, there exists ¢’ € S with

Then h € Ny, (S).

Notice that this condition does not necessarily fix the subspaces constructed
by the code. For example, suppose we had stabilizer S = (g1, g2, g3, 94) and
state 1) such that g; [¢)) = —[¢) and g; |¢)) = |[¢) for i = 2,3,4. Then given
an h that only normalizes S, this state [¢)) lying in the (—,+,+, +) subspace
could be sent to h [b) lying in the (+, —, 4+, +) subspace.

In order to prevent this permutation of subspaces, we can impose the stricter
condition that h belong to the centralizer Cyy, (S). In other words, we can require
hg = gh for every g € S. Though theoretically this provides more structure to
syndrome measurements, It is not yet clear what tangible benefits this restriction
could provide to quantum error correction coding.

B.4 Finding Logical Cliffords

In order to utilize a stabilizer code with k stabilizer generators, it is necessary
to find for each logical operator on m — k logical qubits an analogous physical
operator acting on m physical qubits. In addition to realizing the action of its
logical counterpart, a physical operator must also preserve the code space. We
used results from [2] as a means to synthesize logical Cliffords for our research.
The first step in synthesizing logical Cliffords is to define the logical Pauli
operators. The logical Paulis are defined by their action on a logical state:

il
XE|z), = |}, =42 FH I

xi, ifi#j
ZF), = (1) |2') .

For CSS codes, finding the physical Pauli operators X;,Z;,j = 1,...,m is a
matter of choosing generator matrices for the classical generating code C of the

form
Hc
Ge =)
¢ [GC/CJ

17

. . X Z
We can choose two variations G e and G, e where

T
Gé‘(/oi <Gg/cL> - im—k:
For example, in the [[4,2,2]] code we have:

x [t o110 s _[t 100
GC/CL[l 10 of ™Gt =11 0 1 o]

We can read off the physical implementations of the Pauli operators as the rows
of these two generator matrices. We then check to ensure that the physical
Paulis commute with every element of the stabilizer and that they satisfy the
condition

X.Z; =

{—Zin, if i =
J

Z;Xi, i)

Each Clifford operator must satisfy similar conditions with regards to its action
on physical Pauli operators. Action in this case refers to conjugation by the
Clifford operator. The process of finding the remaining physical Cliffords thus
begins with listing these conditions and then finding a suitable physical circuit.
As an example, consider the SW AP, 0 H; H, physical operator for the [[4, 2, 2]]
code, which has a relatively simple implementation in the code space. This must
satisfy the conditions on X:

SWAP120H1H2 Z
P 4o =

Xl :Xng Z1Z3

= SW AP 20H, H =
Xo = X Xo 2201200002 70— 70 7

and likewise on Z:

SWAP20H, H>
—

7y =712 X5 = X1 X
ZQ — leg SWAP120H1H2 Xl _ X1X3

We can see that a viable circuit, which also fixes the stabilizer, is Hy Ho H3 Hy,
as depicted in Figure [B4] below.

-
—{H -

Figure 5: Circuit implementing SW AP15 o o, H, gate

EIENE

Another approach, which is useful particularly for more complex physical
implementations, uses symplectic geometry to find a symplectic matrix F' =

18

A B
C D
What follows is justification for the use of symplectic matrices to represent
elements of the Clifford group.

representing the operator, where F' must also satisfy FQFT = Q.

Theorem 3. The automorphism induced by g € Cliffy satisfies

Ag By

T —
gE(a,b)g" = £E([a,b]F,), where Fy = [¢ D,

] € Sp(2m,Fs)

We provide a condensed version of the proof in [2] below:

Proof. We begin by showing that for all [a,b] € F3™ there exists some some
matrix F' € F2™**™ such that gF[a, blg" = +E([a,b]F). Consider the action of
f € Cliffy on some E(e;,0), where e¢; € F§* with entry 1 in the i*h position,
and 0 otherwise. Note that the set of all e; forms a basis for F5*, and thus the
set of E(e;,0) forms a basis for Xx. Since g is an automorphism of HWy, it
maps E(e;,0) — £FE(aj,bl), and likewise for the set of elements which form a
basis for Zy, denoted E(0,¢e;), g defines a map E(0,e;) — +F(c},d}), where
[al,bl],[c},dl] € F3™. We can therefore define a matrix F with i'h row [a}, b}]
and m + j'h row [}, d}] satisfying

gE(e;,0)g" = £E([e;, 0] F), and gE(0,¢;)g" = +E([0, ¢,]F).

Since [e;,0],[0,¢;] form a basis for F3™ we can conclude that gE[a,blg! =
+E([a,b]F'). For a particular g, we denote F' as F,. Next we show F, is
symplectic by proving FyQF] = Q.

We know already that

E(a,b)E(d, V) = (=1)2"" {abhla"Ds Bq 4 o' b+ V). (4)

where ([a, b], [@’,b'])s is the symplectic inner product. If we conjugate [4] by g
we have

(9E(a,b)g")(gE(d',b)g") = (=)@ (et Ds (g E(a + o' b +)gT)
= E([a,b]F,)E([d, V'] F,) = £(~1)7"" e Vs B(la 4+ o b+ V] F,)

Defining [c,d] £ [a,b]F), [¢/,d'] £ [a’,b]F, and applyingagain, we have
B, B B B1F,) = (1) @ HFle YV B(fa 1 ol b+ D)
By equating the two righthand sides for all [a,], [a/, b’] we’ve shown that
(la,b]F,, [a', V') Fy)s = ([a,b],[a',b])s

and thus proven that F is a symplectic matrix.

19

We proceed by writing our conditions as binary linear transformations:

[1010, 0000] F = [0000, 1010] = [1010]A = [0000], [1010] B = [1010]
[1100, 0000 F = [0000, 1100] = [1100]A = [0000], [1100]B = [1100]
(0000, 1100]F = [1100, 0000] = [1100]C' = [1100], [1100]D = [0000]
(0000, 1010] F' = [1010,0000] = [1010]C = [1010], [1010]D = [0000]

from which we can conclude that satisfactory choices for A, B,C and D are:

A=0, B=1I, C=I, D=0,

which gives

o I
=i 5

which is the symplectic matrix for the transversal Hadamard.

Note that there will typically be multiple symplectic solutions for any par-
ticular physical Clifford. The algorithm in [2] indicates the matrix generated
by the simplest circuit, which is likely to have the lowest rate of error. We may
also choose a matrix F' that centralizes the stabilizer. The effect of selecting a
centralizing versus normalizing solution is explored later in this paper.

B.5 Fault Tolerance

Not only can quantum error-correcting codes protect stored or transmitted
quantum information, they can also protect quantum information that is dy-
namically undergoing computation. With fault tolerant quantum computation,
it is theoretically possible, given certain conditions, to attain arbitrarily good
quantum computation even with faulty logical gates.

After a qubit carrying quantum information is encoded as a block of qubits,
encoded gates can cause errors to amplify. For instance, if the encoded block of
qubits contains a CNOT gate, an X error on the control qubit will lead to an
error on the target qubit.

—— —o—{X|—
X} ——{x}-
Consider the circuits above. If an X error occurs on the second qubit before

a CNOT gate is applied, it propagates to X errors on both qubits. We may
check this mathematically by noting that

CNOT o0 X, = CNOT o X, 0 CNOT' o CNOT
= X1X2 o CNOT

20

Thus, an X error on the second qubit followed by a CNOT is equivalent to an
X error occurring on both qubits after the CNOT gate being applied.

Therefore, it is important to design circuits with encoded gates that will
limit the propagation of errors, and this is the idea of fault-tolerance. To be
exact, a fault-tolerance procedure has the property that a failure in one elemen-
tary operation in a component will result in at most one failure in the qubits
output from this component. Such elementary operations may include noisy
state preparations, noisy gates, noisy quantum wires, or noisy measurements.

To better understand fault-tolerance, it is useful to think back to the er-
ror model. One of the key assumptions made was that errors are drawn from
the Heisenberg-Weyl Group and are represented as tensor products of Pauli
matrices.

After establishing the notion of fault tolerance, it is helpful to see how a
fault tolerant gate should be implemented. The following diagram, taken from
[4] will help illustrate how two or more errors might occur on an encoded block
of qubits.

»—‘ Syndrome Measurement H Recovery k
}—‘ Syndrome Measurement H Recovery k

2 (3] (4]

L]

1. There is a pre-existing error at Step 1 on each of the two qubits, and the
rest of the circuit is performed perfectly. Since an error takes place with
probability cop, the probability of two errors happening at stage 1 is c2p?.

2. There is an error on qubit 1 before entering the circuit (stage 1) and
there is an error on the CNOT gate (stage 2), resulting in two errors in
the output. Since each error occurs with probability p, the probability of
having two errors in the output is c;p?.

3. Two failures happen at the CNOT gate (stage 2), with a probability of
2

Cop~.
4. One error occur at the CNOT gate and one at the syndrome measurement.
This has a probability of c3p?.

5. Two or more failures occur during the syndrome measurement step. The
probability of this happening is c4p?, with co representing the number of
pairs of syndrome measurements.

6. An error happens at syndrome measurement and an error happens at
recovery. The probability can be represented as csp?. The value of cs
is determined by the product of the number of syndrome measurement
points and the number of recovery places.

21

7. Two or more failures take place at the stage of recovery. The probability,
cep?, is thus dependent on the number of pairs of recovery steps.

Thus, the total probability of at least two errors happening is cp? where
c = c% 4+ c¢1 4+ ¢ca 4+ ¢34+ ¢4 + ¢5 + cg. In the case of Steane code, the value
of ¢ is about 10*. Since a perfect decoding only fails when there are two or
more errors in the block of encoded circuits, the probability of a decoded state
containing an error is at most O(p?) times larger after the action of circuits on
the encoded states. Therefore, as long as p is small enough, the probability of
error in decoding, c¢p?, will be smaller than 1. For instance, if p < 1074, then
cp? is smaller than 1, and there is a net gain by encoding the circuits.

B.5.1 Fault-tolerant initial state preparation for [[4,2,2]] codes

While Gottesman proposed that the logical |00) state can be prepared fault-
tolerantly with the following circuit

T D

» —{H]

q3 D

qa S *

A @—&

Figure 6: Fault-Tolerant Initial state preparation for the [[4,2,2]]

However, this fault-tolerant circuit could only be achieved by 5 qubits with
circular connection (4 qubits for computation and 1 ancilla bit). The ancilla
bit is used to determine if any error occurs during the implementation of this
circuit. Condiser the connectivity of ibmqx4, it is impossible to prepare the
states with this circuit. Consequently, we only use the first 4 qubits in the
circuit to prepare the initial state. Since this part is not fault-tolerant, it does
impact the measured results and the success rate.

B.5.2 Fault-tolerant gates for [[4,2,2]] codes

For [[4,2,2]], there is a number of logical gates that can be performed fault-
tolerantly. The logical Pauli gates can be simply written as the tensor product
of physical Pauli gates:

X1 =X0IloX®l

Xo=X®X®I®I
7 =7207Z1Ix1
Zo=7201I7Zx1

Performing Hadamard gates on all the physical qubits is equivalent to perform-
ing Hadamard gates on both of the logical qubits but swapping the two qubits

22

as well. There are a number of logical gates that cannot be written as a combi-
nation of physical gates that are performed on the physical qubits in a bitwise
fashion, but are fault tolerant as well. The table below summarizes the set of
gates:

Physical Gates Logical Gates
X@I®X®I X®lI
XXIel I®X
AR R ZQ1
ZRI®Z1 I®Z

HoH®H®H | SWAP;, 0 (H ® H)
PRPRPQP (Z® Z)o(CZ)
SW AP, CNOT,

SW AP, CNOT»,

Table 5: Set of Fault-Tolerant Gates

23

	Real Randomized Benchmarking
	Experimental Design
	Implementation Details
	Results

	Benchmarking Centralizing versus Normalizing Solutions
	Experimental Procedure
	Implementation Details
	Results
	Future Work

	Background
	Introduction to Heisenberg Weyl
	Kronecker Products
	Time Shifts and Frequency Shifts

	Quantum Error Correction
	Stabilizer Codes
	CSS Codes

	Classifying Errors
	Implementing General Logical Operators
	Finding Logical Cliffords
	Fault Tolerance
	Fault-tolerant initial state preparation for [[4,2,2]] codes
	Fault-tolerant gates for [[4,2,2]] codes

