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1 Introduction

In this paper, we investigate Stein Variational Gradient Descent (SVGD), an
algorithm that allows a set of particles to evolve according to a combination
of gradient descent and convolution with a Gaussian kernel, so that the parti-
cles’ empirical density approximates a target probability distribution. Unlike
Monte Carlo (MC) algorithms, which operate via randomness, SVGD deter-
ministically updates the particle positions so that each iteration decreases
the KL divergence between the particles and the target distribution.[1] For
some distributions, SVGD may prove to be a superior to MC in terms of
accuracy and computation time.[2] It often requires fewer numbers of par-
ticles than the counterpart, because it takes full advantage of the gradient
information of the target distribution; for one particle, it degenerates to the
gradient descent algorithm.[1] It may be difficult, on the other hand, to an-
alyze the convergence of MC.[2]

We restrict our discussion to one-dimensional distributions. Given a target
probability density function (PDF) p(z), we seek to understand an algorithm

that constructs particles {x1,...,zy} in R such that
LN
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for some general function f(z). We call this set of particles and their dis-
tribution the particle approzimation. Since we are essentially replacing a
weighted average across the entire real line with an even average across a
finite number of points, the position of these particles determines the ap-
proximate distribution.

The algorithm is a particle method that spawns and moves a number of
particles with positions {Xi,..., Xy} on the real line. The resultant posi-
tion of the particles after long time is set of approximation points given by
the algorithm. The dynamics of the particles and indeed the method itself
can be characterized by a system of ordinary differential equations (ODEs)
of the form:

%Xi — (X)), i=1,....N (1.2)

In all particle methods, the velocity field ¢ must somehow incorporate fea-
tures of the target PDF, so that the dynamics of the particles will depend
upon the target distribution. In particular, SVGD is an nteracting par-
ticle method, meaning that ¢(X;) depends on the position of all particles
{X1,..., Xy} rather than just X; itself.

The following sections present theory behind the derivation and expected
behavior of a particular interacting particle method in addition to interest-
ing results found from the implementation and testing of the algorithm.

2 Theory

2.1 Particle Approximations

Let X be a continuous random variable with PDF p. That is,
b
P(X € (a,b)) :/ p(x)dz (2.1)

In addition, let Fy be the cumulative distribution function (CDF) of X. It



can be represented:

Fx(x) = /z p(T)dr (2.2)

In the coming sections, we will commonly refer to continuous random vari-
ables and their distribution functions with X, p, and Fx. The target distri-
bution we are attempting to approximate comes in this form.

Let Y be a discrete random variable. Its distribution can be described by a
set of weights {wy,...,wx | > w; = 1} corresponding to points {z1,...,zy}
such that

PY=x)=w;, i=1,...,N (2.3)

Note that Y does not have a traditional PDF, since it is a discrete random
variable, but it does have a CDF, which we call Fy .

0 T <1
Fy(z) = Z;lej v, <r<wmg, t=1,...,(N=1) (2.4)
1 y <z

Using the Dirac delta function, we can also define a generalized probability
density function p

N
pla) = wid(x — ;) (2.5)
that fulfills the role for the PDF of Y:

b
P(aﬁYﬁb):/u(x)dx
ab N
= Zwﬂ(w—xﬂdm

which is the sum of w; for all x; between a and b.

Our particle approximation yields a specific case of this general form. We
use equal weights w; = % for all of the points { X1, ..., Xy} produced by the



interacting particle method, resulting in the following cases of the equations
above:

1
B(Y =X)=~, i=L...N (2.7)
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N (2.10)

We will commonly refer to discrete random variables and their distribution
functions with Y, u, and Fy. The particle approximation to the target
distribution comes in this form.

2.2 Metric for Evaluating Particle Approximations

In order to evaluate the accuracy with which a particle approximation ap-
proximates a target distribution, we employ a distance metric that measures
the maximum the difference between CDFs. Given random variables X and
Y that have CDFs Fx and Fy respectively, we define the metric d as follows:

d(X,Y) = max |Fx(z) — Fy(z)| (2.11)

zeR

If we apply this metric to random variables X and Y with PDF p and gen-
eralized PDF pu, we quickly arrive at a lower bound for the distance metric.

Theorem 2.1. Let X be a continuous random variable with PDF p and
CDF Fx, and let Y be a discrete random variable with generalized PDF p
and CDF Fy. Then,

1

d(X,Y) >
(7)—2N
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Proof. Suppose d(X,Y) < ﬁ We will proceed by contradiction.

By Lemma A.1 (proven in the Appendix), if P is the set of the points
{X1,..., Xy} for which p is non-zero, the following is true:

d(X,Y) = max |Fx(z) — Fy(z)|
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Combined with our initial supposition,

X, Y) = o (1Fx(p) = Bl i [Fx(o) = Fyl@) ) < 5.

1 1
|Fx(p) — Fy(p)| < N and mlig{ |Fx(x) — Fy(z)] < N VpeP

Because F'x is everywhere differentiable and therefore everywhere continuous,
lim, ,,- Fx(x) = Fx(p). Using this fact, we rewrite the two inequalities
above:

1 1 1 1
. Fe(p) - F  and  — — < Fy(p) — lim F -
oy < Ix(p) = Fyr(p) < 5 an oy < Ix(p) = Iim Fy(z) < o

If we flip the parity of the left inequality and sum the two, we arrive at a
new inequality:

1 1 1 1
< Fy(p)—F — and — — < Fy(p)— lim F —
oy < Fy(p) = Fx(p) < 5 an sy < Fx(P) Jim v(2) < 5y
1 ) 1
—N < Fy(p) — Fx(p) + Fx(p) — lim Fy(l’) < N
T—p~
1 1
< Fy(p)— lim F -
~ < () Jim v(z) < &
Fy(p) — lim Fy(z)|< —= VpePrP
T—p

Now note that by the construction of Fy (x):

=X,
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Substituting into the inequality above:

1
‘wi’<ﬁ Vp=X; € P={Xy,..., Xy}

Since the weights w; are always positive, we can drop the absolute value. If
we sum over all NV values of i, we arrive at the problematic:

N N 1

This is a contradiction, since by definition, > w; = 1. Our supposition that
d(X,Y) < 5% must be incorrect. Therefore,

1
dX,Y)> —
( ) ) — 2N
O
Although it may be obscured in the proof above, the intuition behind this
bound is quite simple. In Figure 1 below, we can see that lengths a and b

sum to w;.
/ Fx(x)
- > Fy(x)

Figure 1: Intuition for Metric Lower Bound



Since both a and b are of the form |Fx(z) — Fy(z)|, they each lower bound
d(X,Y). If we wish to maximize the lowest lower bound, they must be equal.
In total, there are IV points x; each with their own a and b constructions that
lower bound d(X,Y). Since > w; = 1, if we make all 2NV construction lengths

equal, each would be 3 N

2.2.1 Note on the Choice of Metric

The distance metric featured above is not the only usable metric. For exam-
ple, if we revisit the goal of producing points {z1,...,zx} in R such that

[ @ %Zlf@k) (212

we can derive another metric based on the difference between the left- and
right-hand sides of the equation. If we let X be a continuous random variable
with PDF p, and if we let Y be a discrete random variable with equal weights
across the points {xy,...,zx}, and generalized PDF p, then we would want
to minimize the following metric:

1 N
X Y) =sup | [ F@)p@)de— =3 fla)
fen / = (2.13)
= / F@)ple) de — / F(@)u(z) de

for a certain class of functions H. The problem then becomes how to choose
this class of functions against which we will measure our particle approxima-
tions.

Ultimately, we chose the distance metric of the difference between CDFs
for one main reasons. Its ease of computation allowed for faster testing of
simulations. Lemma A.1 helped to decrease the number of computations,
and Theorem 2.2 gave a benchmark against which to compare algorithm
performance.



2.3 Derivation of ODE Dynamics
2.3.1 Deterministic ODE: SVGD
The SVGD algorithm can be expressed by the following ODE[2],

%Xi — (X)) = —— [K(Xi _X)E(X;) + %K’(XZ- ~x)| @)

j=1

where the input score function E(x) is related to the target distribution by

1
p(z) = EG_BE("”) (2.15)

,with Z a normalizing constant, and K is a positive-definite kernel. We

choose a Gaussian kernel with variance o2, i.e.
1 22
K(z)= € 202, (2.16)

V2mo?
The parameter [ has the physical significance of inverse time, such that
small betas allow the particles to move faster toward a steady state, if there
is one. In the implementation, we use a uniform step size € such that, at each
iteration, X; — x; + €p(X;). We assume all particles have the same weight,
so at each time step ¢, the empirical distribution is

p(x,t) = % Z 5z — X;). (2.17)

In Equation 2.14, the first term of ¢(X;) in square brackets is the kernalized
gradient descent which takes particles to highest-probability regions and the
second term spreads particles out in space. Note that, if N =1 or if K(z) =
d(z), Equation 2.14 degenerates to gradient descent.

2.3.2 The Continuous Time Limit: Fokker-Planck Equation

It can be shown that, as € — 0, the time evolution of the empirical density
p(z,t) in 2.3.1 reduces to a nonlinear partial differential equation,

O uat) = - (o()u(r. 1)
— S E@u) + 5o ) (218)



Equation 2.17 is called the Fokker-Planck equation. See B.3 in [1] for the
derivation. In particular, if N — oo as well, u(z,t) — p(z,1t).

2.3.3 Stochastic ODE: Langevin Dynamics

It is worth comparing SVGD, a deterministic ODE system, to Langevin dy-
namics, a stochastic one. The equivalence of Langevin dynamics and the
Fokker-Planck equation is given in [5]. Langevin dynamics can be expressed

by the ODEJ3],

d 2
—Xi =p(X;) = —E'(X;) + 4/ 2 n(t) (2.19)
dt 3

where 7(t) = % and w(r) = [ n(t)dt is a Wiener process, the sum of

the steps of a random walk after time 7.[4] A property of random walks is
that the w(7) scales with /7. In implementation, 7, can be simulated by %
where £ ~ N(0,1) and € is a small time step. The physical interpretation of
this white noise term is that solvent molecules randomly kick a given particle
without contributing to the average velocity of the particle.[4]

Note that the first term of ¢(X;) in Equation 2.19 is identical to the first
term of ¢(X;) in Equation 2.14 in the absence of a kernel, i.e. when the
kernel is a delta function.

It will be instructive to compare the effect of the inverse-time parameter
£ on SVGD and Langevin algorithms. Because S changes the target distri-
bution, an algorithm for which the convergence time is reasonable for a large
range of 8s will be one that can practically accommodate a large variety of
distributions.

2.4 Simple Cases

We would like to explore the steady state of the Gaussian Kernel ODE sys-
tem in order to predict the effectiveness of the algorithm. We can directly
compute the distance metric for very simple cases.



2.4.1 Single Well Potential, N=2

Consider the case where

plx) = e and N =2 (2.20)

Since N = 2, we begin with a pair of ODE’s:

%= 3 [ KCG - X)E () + K0 - X))
! (2.21)
d

L v : Lo
7=y ; [K(Xz — X;)E(X;) + EK (X2 — Xj)}

Since we are interested in the steady state, we can take advantage of the
symmetry in the steady state for the N = 2 case.

1.0 4

0.8 A

0.6

0.4

0.2 4

0.0 1

—1‘,00 —0j75 —OI.SO —0125 O.IDO 0.‘25 0.:')0 0.I7'5 1.60
Figure 2: Steady State for N=2

Call the left particle Xj.s and the right particle X,;g;. We will assume that
Xiept = —Xrigne and only solve for the steady state of X,;gn,. This allows us
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to reduce the system of equations to just one:

N
d 1 1
g7 Kright = ~ 77 > [K(Xm'ght — X)) E'(X;) + EK/(Xright - Xj)] =0
j=1

(2.22)
Substituting proper values/expressions for N, E’, 5, K, and K’ and solving
for X,gnt, we arrive at the following result for the position of the particle on
the right as a function of the kernel parameter sigma:

14 02
2

Xright = 0/ log (2.23)

g

X_rvs sigma (N=2)
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Figure 3: Position of Right Particle vs Sigma for N=2

We can also find the distance between the particle approximation and the
target distribution as a function of sigma. We begin with the statement of
Lemma A.1:

1. Y) = max (1Fp) ~ Fr (o), Jim [Fxlo) - Fr(all)  (221)

peP
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Due to symmetry, the values of the absolute value expressions for p = X
and p = X4 are the same. Computing for just the p = X4 case:

d(X, Y) = Inax ( ‘FX<Xright) - FY(Xright)’ s lim ‘Fx<£L’) - Fy(fﬂ)‘ )

x_)Xright

= max ( |FX<X7"ight) - ]-| ; |FX(X7‘ight) - 05|)

d(c) = max ( |Fx (Xyignt (o)) — 1|, |[Fx(Xrignt(o) — 0.5|)
(2.25)

The equation derived above is shown graphically below in Figure 4. The two
"branches’ of the graph correspond to the two absolute value expressions in
the equation. The first branch persists as long as the value of Fx(X,ign(0))
is farther away from 1 than from 0.5, that is, less than 0.75. Then, the second
branch takes over once Fx (X, ignt(0)) is farther from 0.5 than from 1, that is,
greater than 0.75. The minimum distance occurs between the two branches.
The optimal sigma value that produces the minimum distance is about 0.57.

d vs sigma (N=2)
0.50

0.45 4

0.40 4

0.35 4

0.30 4

0.25 4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 4: Distance Metric vs Sigma for N=2
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2.4.2 Single Well, N=3

Consider the case where

1 2
)= e and N =3 2.26
ple) = <= (2:20)
Since N = 3, we begin with a trio of ODE’s:
d 1o [ 1 I
FX ="y ; _K(Xl - X)) E' (X)) + BK/(Xl - Xj)_
d 1o [ 1 ]
Xy == ; _K(XQ — X;)E'(X;) + BK’(XQ — Xj)_ (2.27)
d 1o [ 1 ]
R DK (X = X)E'(X;) + EK'(X:)) - X;)

=1t -

Again, since we are interested in the steady state, we can take advantage of
the symmetry in the steady state for the N = 3 case.

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 A

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100
Figure 5: Steady State for N=3
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Call the left particle Xj.r, the center particle X enser, and the right particle
Xright- We will assume that Xjer = —X,ignt, Xeenter = 0, and only solve for
the steady state of X,;4n. This allows us to reduce the system of equations
to just one:

N
d 1
dt nght Z |: nght )E/<X]) + BK/(Xright - X]) =0

(2.28)
After substitution, the equation is not easily solvable by analytical methods.
Although a numerical solution gives the graphical results below, overlaid with
the graphs for the N = 2 case:

X_rvs sigma (N=2,3)

084 — N=2
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Figure 6: Position of Right Particle vs Sigma for N=3
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d vs sigma (N=2,3)
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Figure 7: Distance Metric vs Sigma for N=3

2.5 Central Assumption

We have yet to prove that symmetric steady states exist and /or are attracting
for all N and o in the single well case, making the basis of the analysis not
entirely valid. However, we make the unsubstantiated assumption that the
SVGD algorithm has one steady state for any choice of N and ¢, and proceed
to explore the distance as a function of ¢ for larger N.

2.6 N-Scalability of Simulations

For N particles, the SVGD system has N equations. Ideally we would like
to extend the analysis in 2.4 for increasing N, but symmetry can only halve
the number of equations, so the system of equations become increasingly dif-
ficult to solve analytically. Thus we use numerical simulations to guide our
exploration of the system’s behavior.

A brute-force implementation of the SVGD algorithm is O(N?). Due to
computational time considerations, we use a Barnes-Hut tree which recur-
sively branches the entire number line into nodes representing half of the
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range, so that particles which are sufficiently far away from a given particle
are treated as one effective particle at the center of the range represented by
their node.[6] The simulation with Barnes-Hut approximation is O(N log N).
3 Results and Analysis

The plot of steady state distance against the kernel sigma for varying N is
shown in Figure 8.

final distance vs. sigma for varying N
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Figure 8: Steady state distance vs. kernel sigma

As expected, larger N results in a smaller final distance at all of the evaluated
sigma values. A notable feature in the plot presented in Figure 8 is the local
minimum found for all N values at ¢ = 0.24. As this dip is independent of
N, we suspect that the value of the dip may also be obtained analytically
from the kernalized PDE, which assumes infinite N. It is not clear, however,
whether the dip persists for N > 320 because, as N increases, the plot flat-
tens. The flattening is as expected, because we know that, for the kernalized
PDE (N= c0), steady state distance should be 0 at all sigma values.

It is interesting that, following the dip, the distance decreases with sigma

up until & = 1. To test whether the decrease is monotonic, we will need data
for larger sigma values.
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The steady state width is plotted against kernel sigma for varying N in
Figure 9. The width is operationally defined as as the difference between
the maximum and minimum position values of particles at steady state. As
mentioned, bigger width is desirable because it represents the ability of the
algorithm to prevent the particles from lingering in the highest-probability
regions. Since we have defined distance using the CDF metric, which ac-
counts for the spread of particles across the real line, it makes sense that
plots in Figures 8 and 9 display a strictly inverse relationship, i.e. there is
no case where a smaller width resulted in a smaller distance.

final width vs. sigma for varying N
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Figure 9: Steady state width vs. kernel sigma

Figure 10 presents a plot of distance over time for varying N. It is difficult to
observe differences across varying N, but we see that for the first 3000 steps,
the distance changes minimally for all N. The plot in Figure 11 zooms into
the steps near convergence (the 20000th step onward). For convergence, we
have used the operational definition that the distance between the empirical
density and the target distribution does not vary by a threshold difference of
1.e —5 for 500 consecutive time steps. Our code stops collecting data as soon
as the system converges. This definition of convergence is reasonable so long
as there is one attracting steady state. According to Figure 11, however,
the code stopped because there was an upkick, which adds weight to the
argument that the steady state is repelling. It would be instructive to run
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the system for longer; perhaps there is more than one steady state.

distance vs. time for varying N
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Figure 10: Distance vs. time step
distance vs. time for varying N, zoomed in at convergence
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Figure 11: Distance vs. time step zoomed in at convergence

Lastly, Figure 12 overlays the distance vs. time for SVGD and Langevin, at
o = 1 (which was the optimal sigma from the range of sigmas investigated)
and N= 320.
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distance vs. time for varying N
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Figure 12: Distance vs. time step for Langevin and SVGD

As mentioned, the challenge of using the Langevin algorithm is that it is
stochastic, so convergence is difficult to analyze. The code for Langevin dy-
namics stopped before that for SVGD, because the variation happened to
be within 1.e — 5 for 500 consecutive steps. But the distance at which the
system met our criteria for convergence is higher than with SVGD.

The Langevin algorithm, however, decreases distance at a higher rate than
does SVGD. It also does not tend to remain at one distance for many initial
steps.

4 Conclusion and Future Work

In our study, we have assumed that SVGD converges to a steady state,
and one steady state only even as we vary parameters such as o, [ and
N. It remains to be proven whether steady states exist and, if so, what
the properties of the steady states are. The same questions remain for the
Langevin system.
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Appendix
A

Lemma A.1. Let X be a continuous random variable with PDF p and CDF
Fx, and let Y be a discrete random variable with generalized PDF 1 and
CDF Fy. Also, let P be the set of the points {X1,..., XN} for which p is

non-zero. Then,

d(X,Y) = max |Fx(z) — Fy(z)|

z€eR
— g (1Px(p) ~ (o) lim [Fx(o) ~ Fyo)])
peEP T—p
Proof. Consider the intervals (—oo, X7), [X1, X2), ..., [Xn_1, Xn), [Xn, ).

Over each of these intervals, both Fx and Fy are monotonically increas-
ing, or entirely non-decreasing, because they are CDFs. More strictly, Fy
is actually constant over each of these intervals. As a result, the quantity
Fx(x) — Fy(z) over these intervals is also monotonically increasing. We now
explore the quantity |Fx(x) — Fy(x)|.

In the case that Fy(x) — Fy(x) is strictly non-negative over an interval,
|Fx(x) — Fy(x)| = Fx(z) — Fy(z), so |Fx(z) — Fy(z)| is also monotonically
increasing. This would mean that the maximum value occurs at the right
endpoint of the interval, or in the limit as we approached the right endpoint
from the left if the interval is open on the right.

In the case that Fx(x) — Fy(x) is strictly non-positive over an interval,
|Fx(x) — Fy(z)| = —(Fx(z) — Fy(z)), so |Fx(z) — Fy(z)| is monotonically
decreasing. This would mean that the maximum value occurs at the left
endpoint of the interval, or in the limit as we approached the left endpoint
from the right if the interval is open on the left.

In the case that Fx(x)— Fy(z) is neither non-negative nor non-positive over
an interval, Fx(z") — Fy (') = 0 for some 2’ on the interval. |Fx(z) — Fy(x)|
would be monotonically decreasing from the left endpoint to ' and monoton-
ically increasing from z’ to the right endpoint. The maximum value would
occur at the left or right endpoint, or in the limit as we approached either
endpoint if the interval is open on the respective side.
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On the interval (—oo, X7), Fx(z) — Fy(z) is strictly non-negative, since
Fx(z) > 0 and Fy(z) = 0 over the entire interval, so the maximum value of
|F'x(x) — Fy(x)| occurs in the limit as we approach X; from the left.

On the interval [Xy, 00), Fx(x)—Fy (z) is strictly non-positive, since Fx(z) <
1 and Fy (z) = 1 over the entire interval, so the maximum value of | Fx (z) — Fy (z)|
occurs at Xy.

On the rest of the intervals, Fx(z)— Fy (z) is indeterminate in terms of these
three cases, but all cases result in the the maximum value of |Fx (z) — Fy ()|
occurring either at X; or in the limit as we approach X; from the left, for
some 1.

All of the intervals together comprise the entire real line, and so the maxi-
mum value of |Fx(z) — Fy(x)| over R is the maximum value of the maximum
values over each of the intervals. This value therefore occurs somewhere in
the set of points that produce maximum values for each of the intervals. The
following expression details the maximum value over all of this set of points:

max <|FX(p) — Fy(p)|, xlig{ |Fx(x) — FY@)’)

peEP
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