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Preface

These notes should, ideally, be read before the Cornell meeting
starts. They are intended to give background material in mathemat-
ical population genetics and also, in part, to form the background
for some of the material given by other lecturers. At the very least,
the first 27 pages should be read before the meeting.

Some standard genetical terms will be used and it is assumed that
the reader is familiar with the meanings of these. These terms in-
clude gene, genotype, allele, (gene) locus, haploid, diploid, homozy-
gote, heterozygote, heterozygosity, monoecious, dioecious,polymorphism,
linkage, recombination.

Introduction

The historical background

Population genetics is the subject growing out of the amalgamation
of the Darwinian theory of evolution and the Mendelian hereditary
system. It is crucial to many current areas of science.

Darwin had no idea of the heredity mechanism, other than the
vague concept that “children tend to be like their parents”. It was
thus very risky of him to put forward his evolutionary ideas in the
absence of having this knowledge. Fortunately his instincts were so
good that he made very few errors when he did this.

Perhaps the central theme in population genetics theory is the
examination of the change in the genetic make-up of a population as
time goes on as a result of selection, mutation, and similar factors.
These notes are based on such an examination. However, they focus
on the random changes in the genetic make-up of a population,
due essentially to random sampling effects. The random choice of
one of two genes to be passed on from parent to child, and the
random events during life that ensure that two equally fit individuals
do not necessarily have the same number of offspring, make this
random, or stochastic, aspect of the theory an important component
of population genetics theory.

Clearly selection is a major factor in the Darwinian theory. How-
ever, in these notes we assume that there are no selective differences
between the different genotypes in a population - that is, we assume
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selective neutrality throughout. On the other hand, much of the
discussion in these notes relates to mutation.

Although these notes describe stochastic processes in evolution-
ary genetics, it is appropriate to start with a deterministic result
that ignores the possibility of random changes in gene frequencies,
since it is so important.

The Hardy–Weinberg law

We consider a random-mating diploid population in which there is
no concept of two separate sexes (that is, a monoecious population)
which is so large that genotype frequency changes may be treated
as deterministic, and focus attention on some gene locus “A”, at
which two alleles may occur, namely A1 and A2. Suppose that in
any generation the proportions of the three possible genotypes at
this locus, namely A1A1, A1A2 and A2A2, are X, 2Y, and Z, re-
spectively. Since random mating obtains, the frequency of matings
of the type A1A1 × A1A1 is X2, that of A1A1 × A1A2 is 4XY , and
so on. If there is no mutation and no fitness differentials between
genotypes, elementary Mendelian rules indicate that the outcome
of an A1A1 × A1A1 mating must be A1A1 and that in an indefi-
nitely large population, half the A1A1×A1A2 matings will produce
A1A1 offspring, and the other half will produce A1A2 offspring, with
similar results for the remaining matings.

It follows that since A1A1 offspring can be obtained only from
A1A1 × A1A1 matings (with overall frequency 1 for such matings),
from A1A1 ×A1A2 matings (with overall frequency 1

2
for such mat-

ings), and from A1A2 × A1A2 matings (with frequency 1
4

for such
matings), and since the frequencies of these matings are X2, 4XY ,
4Y 2, the frequency X ′ of A1A1 in the following generation is

X ′ = X2 + 1
2
(4XY ) + 1

4
(4Y 2) = (X + Y )2. (1)

Similar considerations give the frequencies 2Y ′ of A1A2 and Z ′ of
A2A2 as

2Y ′ = 1
2
(4XY ) + 1

2
(4Y 2) + 2XZ + 1

2
(4Y Z)

= 2(X + Y )(Y + Z), (2)

Z ′ = 1
4
(4Y 2) + 1

2
(4Y Z) + Z2 = (Y + Z)2. (3)
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The frequencies X ′′, 2Y ′′ and Z ′′ for the next generation are found
by replacing X ′, 2Y ′ and Z ′, by X ′′, 2Y ′′ and Z ′′ and X, 2Y and Z
by X ′, 2Y ′ and Z ′ in (1)–(3). Thus, for example, using (1) and (2),

X ′′ = (X ′ + Y ′)2

= (X + Y )2

= X ′,

and similarly it is found that Y ′′ = Y ′, Z ′′ = Z ′. Thus, the genotype
frequencies established by the second generation are maintained in
the third generation and consequently in all subsequent generations.
Frequencies having this property can be characterized as those sat-
isfying the relation

(Y ′)2 = X ′Z ′. (4)

Clearly if this relation holds in the first generation, so that

Y 2 = XZ, (5)

then not only would there be no change in genotypic frequencies
between the second and subsequent generations, but also these fre-
quencies would be the same as those in the first generation. Popu-
lations for which (5) is true are said to have genotypic frequencies
in Hardy–Weinberg form.

Since X + 2Y + Z = 1, only two of the frequencies X, 2Y and
Z are independent. If, further, (5) holds, only one frequency is
independent. Examination of the recurrence relations (1)-(3) shows
that the most convenient quantity for independent consideration is
the frequency x of the allele A1.

This is an important result, since it shows that for diploid popula-
tions such as those discussed above, it is sufficient to focus on allelic
frequencies for much of the analysis. In doing this we will follow
the conventions of population genetics and refer to these, somewhat
illogically, as gene frequencies.

These conclusions may be summarized in the form of a theorem:

Theorem (Hardy–Weinberg). Under the assumptions stated, a pop-
ulation having genotypic frequencies X (of A1A1), 2Y (of A1A2) and
Z (of A2A2) achieves, after one generation of random mating, stable
genotypic frequencies x2, 2x(1− x), (1− x)2 where x = X + Y and
1−x = Y +Z. If the initial frequencies X, 2Y , Z are already of the
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form x2, 2x(1−x), (1−x)2, then these frequencies are stable for all
generations. The frequency x of the allele A1 remains unchanged is
all generations.

The important consequence of this theorem lies in the stability
behavior. If no external forces act, there is no intrinsic tendency for
any variation present in the population, that is, variation caused by
the existence of the three different genotypes, to disappear. This
result is of great importance for the Darwinian theory, but we do
not dwell on it now.

The Hardy-Weinberg law can be generalized in various ways, in
particular to the case where more than two alleles are possible (for
example in the ABO blood group system), but we do not consider
these generalizations here.

As stated in the above, the Hardy-Weinberg law assumes that
the population considered is infinite in size, so that that random,
or stochastic, changes in gene (more strictly, allelic) frequencies are
not allowed. However, all population sizes are, of course, finite, and
thus the stochastic aspect of evolutionary population genetics must
be investigated. From now on, these notes focus entirely on
stochastic processes in evolutionary genetics.

The stochastic theory: Two alleles

The “simple” Wright-Fisher model

Basic theory

It is necessary, in order to arrive at a theoretical estimate of the im-
portance of the stochastic factor, to set up stochastic models which
reasonably describe the behavior of a finite population. Perhaps
more than in any other part of population genetics theory, the choice
of a model is arbitrary, and no-one pretends that Nature necessar-
ily follows at all closely the models we construct. Although they
did not use the terminology of Markov chain theory, the methods
used by Fisher (1922, 1930, 1958) and Wright (1931), in developing
the model considered in this section, are in fact those of this the-
ory and its close relative, diffusion theory. Here we present some of
the conclusions of Fisher and Wright in the terminology of Markov
chains.



6

We consider, as the simplest possible case, a population of fixed
size N . Suppose that the individuals in this population are mo-
noecious, that no selective difference exist between the genotypes
possible at the gene locus “A” under consideration, and that there
is no mutation. Since each individual carries two genes at this locus
(one maternally, the other paternally, derived) there are 2N genes
in the population in any generation, and it is sufficient to center our
attention on the number X of A1 genes. Clearly in any generation
X takes one or other of the values 0, 1, . . . , 2N , and we denote the
value assumed by X in generation t by X(t).

We must now assume some specific model which describes the
way in which the genes in generation t+1 are derived from the genes
in generation t. Clearly many reasonable models are possible and,
for different purposes, different models might be preferable. Nat-
urally, biological reality should be the main criterion in our choice
of model, but it is inevitable that we consider mathematical conve-
nience in this choice. The model discussed below, although it was
not written down explicitly by Fisher and Wright, was clearly known
to them both, since they both gave several formulas deriving from
it.

The model assumes that the genes in generation t+1 are derived
by sampling with replacement from the genes of generation t. This
means that the number X(t+1) of A1 genes in generation t+1 is a
binomial random variable with index 2N and parameter X(t)/2N .
More explicitly, given that X(t) = i, the probability pij that X(t +
1) = j is assumed to be given by

pij =

(
2N

j

)
(i/2N)j{1− (i/2N)}2N−j, i, j = 0, 1, 2, . . . , 2N. (6)

We refer to the model (6) as the “simple” Wright–Fisher model,
since it does not incorporate selection, mutation, population subdi-
vision, two sexes or any other complicating feature. The purpose
of introducing it is to allow an initial examination of the effects of
stochastic variation in gene frequencies, without any further com-
plicating features being involved. More complicated models that
introduce factors such as selection and mutation, and which allow
more than two alleles, but which nevertheless share the binomial
sampling characteristic of (6), will all be referred to generically as
“Wright–Fisher” models.
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In the form of (6), it is clear that X(·) is a Markovian random
variable with transition matrix P = {pij}, so that in principle the
entire probability behavior of X(·) can be arrived at through knowl-
edge of P and the initial value X(0) of X. In practice, unfortunately,
the matrix P does not lend itself readily to simple explicit answers to
many of the questions we would like to ask, and we shall be forced,
later, to consider alternative approaches to these questions.

On the other hand, (6) does enable us to make some comments
more of less immediately. Perhaps the most important is that what-
ever the value X(0), eventually X(·) will take either the value 0 or
2N , and once this happens there will be no further change in the
value of X(·). These are absorbing states of the Markov chain (6).
Genetically this corresponds, of course, to the fact that since the
model (6) does not allow mutation, once the population is purely
A2A2 or purely A1A1, no variation exists, and no further evolution
is possible at this locus. It was therefore natural for both Fisher
and Wright to find the probability of eventual fixation of A1 rather
than A2 and, perhaps more important, to attempt to find how much
time might be expected to pass before fixation of one or other allele
occurs.

It is easy enough to see that the answer to the first question is
X(0)/2N . This conclusion may be arrived at by a variety of meth-
ods, the one most appropriate to Markov chain theory being that
the solution πj = j/(2N) satisfies the standard Markov chain fixa-
tion probability difference equations and the appropriate boundary
conditions. Setting j = X(0) leads to the required solution. A sec-
ond way of arriving at the value X(0)/2N is to note that X(·)/2N
is a martingale, that is satisfies the “invariant expectation” formula

E{X(t + 1)/2N | X(t)} = X(t)/2N, (7)

and then use either martingale theory or informal arguments to
arrive at the desired value. A third approach, more informal and
yet from a genetical point of view perhaps more useful, is to observe
that eventually every gene in the population is descended from one
unique gene in generation zero. The probability that such a gene is
A1 is simply the initial fraction of A1 genes, namely X(0)/2N , and
this must also be the fixation probability of A1.

It is far more difficult to assess the properties of the (random)
time until fixation occurs. The most obvious quantity to evaluate
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is the mean time t̄{X(0)} taken until X(·) reaches 0 or 2N , start-
ing from X(0). As it happens, no simple explicit formula for this
mean time is known, although a simple approximation, given later,
is available. Fisher and Wright, no doubt noting this difficulty, paid
comparatively little attention to the mean fixation time, concentrat-
ing on an approach centering around the leading nonunit eigenvalue
of P . It follows immediately from (6) that if we put x(t) = X(t)/2N ,

E
(
x(t + 1){1− x(t + 1)} | x(t)

)
= {1− (2N)−1}x(t){1− x(t)}, (8)

so that the expected value of the heterozygosity measure 2x(·){1−
x(·)} decreases by a factor of 1− (2N)−1 each generation. It follows
immediately that 1− (2N)−1 is an eigenvalue of the matrix P , and
it is easy to show that it is the leading nonunit eigenvalue. We write
the right and left eigenvectors corresponding to this eigenvalue as
r = (r0, r1, r2, . . . , r2N), and `′ = (`0, `1, `2, . . . , `2N) respectively. It
follows from (8) that r′ is proportional to the vector

{0, 2N − 1, 2(2N − 2), 3(2N − 3), . . . , 2N − 1, 0}. (9)

Unfortunately, no such simple formula is known for the left eigenvec-
tor `. If we suppose that ` and r are normalized by the requirements

2N−1∑

k=1

`k = 1,
2N∑

k=0

`krk = 1, (10)

then standard spectral theory shows that

pij(t) = Prob{X(t) = j | X(0) = i}
= ri`j{1− (2N)−1}t + o{1− (2N)−1}t for t large.(11)

Equations (8) and (11) jointly provide much interesting information.
It is clear that especially in a large population, the mean heterozy-
gosity of the population decreases extremely slowly with time as a
result of the random sampling effects implicit in the model under
consideration. We conclude that although genetic variation must
ultimately be lost under the model (6), the loss is usually very slow.
This slow rate of loss may be thought of as a stochastic analogue
of the “variation-preserving” property of infinite populations shown
by the Hardy–Weinberg law. This conclusion can be generalized,
taking into account complications brought about through variation
in the population size, through geographical factors, through the
existence of two sexes, and so on.
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An ergodic argument

Suppose that, in an otherwise pure A2A2 population, a single new
mutant A1 gene arises. No further mutation occurs, so from this
point on the model (6) applies. How much time will pass before
the mutant is lost (probability 1 − (2N)−1) or fixed (probability
(2N)−1)? The mean number of generations t̄1 for one or other of
these events may be written in the form

t̄1 =
2N−1∑
j=1

t̄1,j, (12)

where t̄1,j is the mean number of generations that the number of A1

genes takes the value j before reaching either 0 or 2N . Both Fisher
and Wright found that

t̄1,j ≈ 2j−1, j = 1, 2, . . . , 2N − 1, (13)

so that, using (12),

t̄1 ≈ 2
(
log(2N − 1) + γ

)
, (14)

where γ is Euler’s constant 0.5772 . . ..
There is an ergodic equivalent to the expressions in (12) and (13)

which is perhaps of more interest than (12) and (13) themselves, and
which is indeed the route by which Fisher arrived at these formulae.
Consider a sequence of independent loci, each initially pure “A2A2”,
and at which a unique mutation A1 occurs in generation k in the kth
member of the sequence. We may then ask how many such loci will
be segregating for A1 and A2 after a long time has passed, and at
how many of these loci will there be exactly j “A1” genes. It is clear
that the mean values of these quantities are t̄1 and t̄1,j, respectively,
and this gives us some idea, at least insofar as the model (6) is
realistic, of how much genetic variation we may expect to see in any
population at a given time. The question of the amount, and the
nature, of the genetic variation that can be expected in a population
at any given time is of great interest to geneticists, and will be taken
up later at much greater length.

Conditional processes

Consider now only those cases for which the number of A1 genes
eventually takes the value 2N. What is the transition matrix of the
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conditional process when the condition is made that eventually this
happens?

We assume that the initial value of X(·) = i. Recalling that we
write X(t) for the number of A1 genes in generation t, we get

p∗ij = Prob{X(t + 1) = j | X(t) = i and eventuallyX(·) = 2N}
= Prob{X(t + 1) = j and eventuallyX(·) = 2N | X(t) = i}

÷ Prob{eventuallyX(·) = 2N | X(t) = i}
= pijj/i, (i, j = 1, 2, . . . , 2N). (15)

Here pij is the (i, j) term in the Wright-Fisher transition matrix (6)
and we have used the fact that when X(·) = i, the probability that
eventually X(·) = 2N is i/(2N), as well as standard conditional

probability arguments and the Markovian nature of X(·). Let P̃ be
the matrix derived from the Wright-Fisher transition matrix P by
omitting the first row and first column and let

V =




π1

π2

. . . 0
0 π2N


 . (16)

Then if P ∗ = {p∗ij}, Eq. (15) shows that

P ∗ = V −1P̃ V. (17)

Standard theory shows that the eigenvalues of P ∗ are identical to
those of P (with one unit eigenvalue omitted) and that if `′(r) is any

left (right) eigenvector of P̃ , then the corresponding left and right
eigenvector of P ∗ are `′V and V −1r. Further, if P ∗(n) is the matrix
of conditional n step transition probabilities,

P ∗(n) = (P ∗)n = V −1P̃ nV

so that

p
∗(n)
ij = p

(n)
ij πj/πi, (18)

a conclusion that can be reached directly. If t̄∗ij is the conditional
mean time, measured in generations, that X(·) = j, given initially
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X(0) = i, then

t̄∗ij =
∞∑

n=0

p
∗(n)
ij

= (j/i)
∞∑

n=0

p
(n)
ij (19)

= t̄ijj/i.

Further theoretical results

In this section we consider the mean time t̄i until an absorbing state
(X(·) = 0 or 2N) of the Markov chain describing the simple Wright-
Fisher model, given that initially the number X(0) of A1 genes is i,
and will also consider the mean number of times t̄ij that X(·) takes
the value j before an absorbing state is reached. While in principle
these expressions can be found from standard theory, in practice
solution of the equations that arise seems extremely difficult, and
simple expressions for these mean times have not yet been found.
On the other hand, it is possible to find a simple approximation for
t̄i by the following line of argument.

We put i/M = x, j/M = x + δx, and t̄i = t̄(x), and suppose t̄(x)
is a twice differentiable function of a continuous variable x. Then
from standard theory,

t̄(x) =
∑

Prob{x → x + δx}t̄(x + δx) + 1 (20)

= E{t̄(x + δx)}+ 1 (21)

≈ t̄(x) + E(δx){t̄(x)}′ + 1
2
E(δx)2{t̄(x)}′′ + 1. (22)

In the expression (22) the random variable is δx, all expectations
are conditional on x and only the first three terms in an infinite
Taylor series have been retained. Since from (6)

E(δx) = 0, E(δx)2 = (2N)−1x(1− x),

Eq. (22) gives
x(1− x){t̄(x)}′′ ≈ −4N. (23)

The solution of this equation, subject to the boundary conditions
t̄(0) = t̄(1) = 0, is

t̄(p) ≈ −4N{p log p + (1− p) log(1− p)}, (24)
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where p = i/2N is the initial frequency of A1. This can be shown
to be a very accurate approximation to the true, but to this day
unknown, mean fixation time.

(The value given in (24), and various other approximations given
in these notes, are in effect “diffusion approximations”, that is ap-
proximate expressions found by approximating a Markov chain by
a diffusion process. Any reference to approximations in these notes
refer to such approximations. Diffusion theory will be discussed in
these lectures by Dr Griffiths.)

In the case i = 1, so that p = (2N)−1, the value appropriate if
A1 is a unique new mutation in an otherwise pure A2A2 population,
Eq. (24) reduces to

t̄{(2N)−1} ≈ 2 + 2 log 2N generations, (25)

while when p = 1
2
,

t̄
{

1
2

} ≈ 2.8N generations. (26)

The value given in (25) is very close to Wright’s and Fisher’s ap-
proximation given in (14).

Suppose now the condition is made that A1 eventually fixes. The
possible values for X are 1, 2, 3, . . . , 2N and Eq. (15) shows that the
conditional transition probability p∗ij is

p∗ij =

(
2N
j

)(
i

2N

)j (
2N − i

2N

)2N−j
j

i

=

(
2N − 1
j − 1

)(
i

2N

)j−1 (
2N − i

2N

)2N−j

. (27)

An intuitive explanation for the form of p∗ij is that, under the con-
dition that A1 fixes, at least one A1 gene must be produced in each
generation. Then p∗ij is the probability that the remaining 2N − 1
gene transmissions produce exactly j − 1 A1 genes. An argument
parallel to that leading to (23) gives

(1− x){t̄∗(x)}′ + 1

2
x(1− x){t̄∗(x)}′′ = −2N (28)

for the conditional mean time t̄∗(x) to fixation, given a current fre-
quency of x. The solution of (28), subject to t̄∗(1) = 0 and the
requirement

lim
x→0

t̄∗(x) is finite, (29)
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and assuming initially x = p, is

t̄∗(p) = −4Np−1(1− p) log(1− p). (30)

We observe from this that

t̄∗{(2N)−1} ≈ 4N − 2 generations, (31)

t̄∗
{

1
2

} ≈ 2.8N generations, (32)

t̄∗{1− (2N)−1} ≈ 2 log 2N generations. (33)

A result equivalent to (31) is that, given initially 2N -1 A1 genes,
the conditional mean number of generations until, loss of A1, given
that such loss will occur, is approximately

4N − 2 generations. (34)

Eq. (32) is to be expected from Eq. (26), since by symmetry,
when the initial frequency of A1 is 1

2
, the conditioning should have

no effect on the mean fixation time. On the other hand, Eq. (31)
and Eq. (33) provide new information and show that, while when
the initial frequency of A1 is (2N)−1 it is very unlikely that fixation
of A1 will occur, in the small fraction of cases when fixation of A1

does occur, an extremely long fixation time may be expected.
As noted earlier, the initial analysis of the model (6) by Fisher

and Wright paid particular attention to the leading eigenvalue of the
transition matrix, regarded as a measure of the rate at which one or
other allele is lost from the population. Although the eigenvalues of
the transition matrix in (6) are of less use than expressions like (24)
and (30) for investigating the length of tome that both alleles may be
expected to remain in the population , they are nevertheless of some
interest, so we now write down the formulae for these eigenvalues.

Since the matrix defined by the pij in (6) is the transition ma-
trix of a Markov chain, it follows that one eigenvalue of the matrix
is automatically 1. Denoting this eigenvalue by λ0, the remaining
eigenvalues, first derived by Feller (1951), are

λj = (2N)(2N−1) . . . (2N−j +1)/(2N)j, j = 1, 2, . . . , 2N. (35)

This confirms the values λ1 = 1 and λ2 = 1−(2N)−1 found earlier by
other methods. We derive the eigenvalues in (35) later as particular
cases of those for the Cannings model.
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Mutation in the Wright-Fisher model

One-way mutation

Suppose now that A1 mutates to A2 at rate u but that there is no
mutation from A2 to A1. It is then reasonable to replace the model
(6) by

pij =

(
2N
j

)
(ψi)

j(1− ψi)
2N−j (36)

where ψi = i(1−u)/2N . Here it is certain that A1 will be eventually
lost from the population, and interest centers on properties of the
time until this loss occurs, either using eigenvalues or mean time
properties. An argument parallel to that leading to (23) shows that,
to a first approximation, the mean time t̄(x) for the loss of A1, given
a current frequency x, satisfies

−4Nux{t̄(x)}′ + x(1− x){t̄(x)}′′ = −4N. (37)

If initially x = p, the solution of this equation, subject to the re-
quirements t̄(0) = 0, and

lim
x→1

t̄(x) is finite,

is

t̄(p) =

1∫

0

t(x, p) dx generations, (38)

where

t(x, p) = 4Nx−1(1− θ)−1{(1− x)θ−1 − 1}, 0 ≤ x ≤ p,

t(x, p) = 4Nx−1(1− θ)−1(1− x)θ−1{1− (1− p)1−θ}, p ≤ x ≤ 1,

}

(39)
and θ = 4Nu. (Formulae for the case θ = 1 are found from (39) by
standard limiting processes.)

It may be shown that with the definition of t(x, p) in (39), t̄(p)
may be written as

t̄(p) =
∞∑

j=1

4N

j(j − 1 + θ)

(
1− (1− p)j

)
. (40)
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The function t(x, p) in (39) is more informative than it initially
appears since, as is shown later, t(x, p)δx provides an excellent ap-
proximation to the mean number of generations for which the fre-
quency of A1 takes a value in (x, x + δx) before reaching zero.

There are two interesting special cases of (39). First, when θ = 2,

t(x, p) = 4N, 0 ≤ x ≤ p,

t(x, p) = 4Nx−1(1− x){(1− p)−1 − 1}, p ≤ x ≤ 1,

}
(41)

and from this,

t̄(p) =
−4Np log p

1− p
, (42)

a conclusion that can also be found directly from (40). Second, when
p = 1, Eq. (40) gives immediately

t̄(1) =
∞∑

j=1

4N

j(j − 1 + θ)
. (43)

A slightly more accurate approximation is

4N
2N∑
j=1

{j(j + θ − 1)}−1 generations. (44)

The case θ = 2 is of some interest. For this value of θ the expression
in (44) reduces to

4N − 2 (45)

generations. This is identical to the conditional mean loss time,
given initially 2N − 1 genes of the allele A1, as given in (34). The
reason why the unconditional mean time in the mutation process
and the conditional mean time in the non-mutation process are es-
sentially identical for the case θ = 2 is that the entire properties of
the two processes are, perhaps surprisingly, essentially identical.

Two-way mutation

Suppose next that A2 also mutates to A1 at rate v. It is now rea-
sonable to define ψi in (36) by

ψi = {i(1− u) + (2N − i)v}/2N. (46)
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There now exists a stationary distribution φ′ = (φ0, φ1, . . . , φ2N) for
the number of A1 genes. No simple explicit form of this distribution
is known. On the other hand, certain properties of this distribution
can be extracted immediately from (36) and (46). The stationary
distribution satisfies the equation φ′ = φ′P , where P is defined
by (36) and (46), so that if ξ is a vector with ith element i (i =
0, 1, 2, . . . , 2N) and µ is the mean of the stationary distribution,

µ = φ′ξ = φ′Pξ.

The ith (i = 0, 1, 2, . . . , 2N) component of Pξ is

∑
j

(
2N
j

)
ψj

i (1− ψi)
2N−j

and from the standard formula for the mean of the binomial distri-
bution, this is 2Nψi or

i(1− u) + (2N − i)v.

Thus,

φ′Pξ =
∑

{i(1− u) + (2N − i)v}αi

= µ(1− u) + v(2N − µ).

It follows that
µ = (1− u)µ + v(2N − µ)

or
µ = 2Nv/(u + v). (47)

Similar arguments show that the variance σ2 of the stationary
distribution is

σ2 = 4N2uv/{(u+ v)2(4Nu+4Nv +1)}+small order terms. (48)

The above values are sufficient to answer the question: “what is the
probability of two genes drawn together at random are of the same
allelic type?” If the frequency of A1 is x and terms of order N−1 are
ignored, this probability is x2 + (1− x)2. The required value is the
expected value of this with respect to the stationary distribution,
namely

E{x2 + (1− x)2} = 1− 2E(x) + 2E(x2).
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If u = v, 4Nu = θ, Eq. (47) and Eq. (48) show that E(x) = 1
2

and,

to a close approximation, E(x2) = 1
4

+ 1
4(2θ+1)

. Thus

Prob (two genes of same allelic type) ≈ (1 + θ)/(1 + 2θ). (49)

This probability can be arrived at in another way, which we now
consider since it is useful for purposes of generalization. Let the
required probability be F and note that this is the same in two
consecutive stationary generations. Two genes drawn at random
in any generation will have a common parent gene with probability
(2N)−1, or different parent genes with probability 1−(2N)−1, which
will be of the same allelic type with probability F . The probability
that neither of the genes drawn is a mutant, or that both are, is
u2 + (1−u)2, while the probability that precisely one is a mutant is
2u(1− u). It follows that

F = {u2 + (1− u)2}{ 1

2N
+ F (1− 1

2N
)}

+ 2u(1− u)(1− F )(1− 1

2N
).

Thus exactly

F =
1 + 2u(1− u)(2N − 2)

1 + 4u(1− u)(2N − 1)
,

and approximately

F = (1 + θ)/(1 + 2θ), (50)

in agreement with (49).

The Cannings (Exchangeable) Model

No mutation

An important generalization of the Wright–Fisher model was intro-
duced by Cannings (1974). As with the Wright-Fisher model, this
model considers a “population” of genes of fixed size 2N , reproduc-
ing at time points t = 0, 1, 2, 3, . . . . The stochastic rule determining
the population structure at time t + 1 is quite general, assuming
only that any subset of genes at time t has the same distribution of
“descendant” genes at time t + 1 as any other subset of the same
size. More precisely, if the ith gene leaves yi descendant genes, it
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is required only that y1 + . . . + y2N = 2N and that the distribution
of (yi, yj, . . . , yk) be independent of {i, j, . . . , k}. In particular all
genes must have the same offspring probability distribution. This
distribution must have mean 1 and we denote the variance of this
distribution by σ2. This interpretation of σ2 is used through-
out these notes when Cannings models are considered. In
some Cannings models a gene present at time t can also be present
at time t+1, and is then counted as one of its own descendants. An
example of this is discussed later.

Our first calculation concerning the Cannings model relates to
eigenvalues. Let the genes be divided into two allelic classes, A1

and A2, and let Xt be the number of A1 genes at time t. Then
Cannings’ first theorem is as follows:-

Theorem (Cannings). (No proof). If

pij = Prob{Xt+1 = j | Xt = i}, i, j = 0, 1, 2, . . . , 2N,

then the eigenvalues of the matrix {pij} are

λ0 = 1, λj = E(y1y2 . . . yj), j = 1, 2, . . . , 2N. (51)

The Wright–Fisher model (6) is clearly a particular case of the
Cannings model, since in the Wright-Fisher model (6) (y1, y2, . . . , y2N)
have a symmetric multinomial distribution. (However, the Cannings
model is far more general, and thus realistic, than the Wright–Fisher
model.) This implies that if we write

(2N)!

y1!y2! . . . yj!(2N − y1 − . . .− yj)!
=

(
n

y

)
,

the eigenvalue λj, j = 1, 2, . . . , 2N for the simple Wright-Fisher
model is given by

λj =
∑

. . .
∑

y1y2 . . . yj

(
n

y

)(
1

2N

)P yi
(

1− j

2N

)2N−P yi

= (2N)(2N − 1) . . . (2N − j + 1)/(2N)j. (52)

This confirms the values given in (35), found originally by Feller
(1951), using other methods.

The theorem shows that, for the Cannings model, the leading
non-unit eigenvalue is λ2 = E(y1y2) where yi is the number of de-
scendent genes of the ith gene in the population. Now

∑
yj ≡ 2N ,
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so that the variance of (
∑

yj) is 0. Then by symmetry,

2N var(yi) + 2N(2N − 1) covar(yi, yj) = 0.

This implies that

covar(yi, yj) = −σ2/(2N − 1), (53)

where σ2 = var(yi). Immediately then,

λ2 = E(y1y2)

= Covar(y1, y2) + E(y1)E(y2)

= 1− σ2/(2N − 1). (54)

To confirm this formula we observe that, in the Wright–Fisher model,
yi has a binomial distribution with index 2N and parameter (2N)−1.
Thus for this model,

λ2 = 1− {1− (2N)−1}/(2N − 1) = 1− (2N)−1,

agreeing with the “j = 2” case in the expression in Eq. (52).
Other properties of the Cannings model follow easily. For exam-

ple, it is clear by symmetry that the probability of eventual fixation
of any allele in such a model must be its initial frequency. Further,
suppose that there are X(t) A1 genes in the Cannings model at time
t, and write X(t) = i for convenience. If we relabel genes so that
the first i genes are A1,

Var{X(t + 1) | X(t)} = Var(y1 + . . . + yi)

= iσ2 + i(i− 1) Covar(y1, y2)

= i(2N − i)σ2/(2N − 1), (55)

from Eq. (53). If x(t) = X(t)/2N , it follows that

var{x(t + 1) | x(t)} = x(t){1− x(t)}σ2/(2N − 1). (56)

Mutation

Suppose now that the genes in the population are divided into two
allelic types, A1 and A2, and that if mutation does not exist the
conditions for Cannings’ first theorem hold. Now assume that A1

mutates to A2 at rate u, with reverse mutation at rate v. Write
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xi = yi + zi, where yi = 1 or 0 depending on whether or not the ith
gene at time t continues to exist at time t + 1. Thus, yi = 0 in the
model (36), but we are considering now more general conditions than
those specified by this equation. The variable zi is the number of
offspring genes from the ith gene at time t. If this gene is of type A1,
define zi1 as the (random) number of its A1 (that is, non-mutated)
offspring: zi1 has a distribution which depends on zi. Similarly if
the ith gene is of type A2 let zi2 be the random number of its A1

(that is mutant) offspring. Then we have

Theorem 2 (Cannings). The eigenvalues of the matrix P describing
the stochastic behavior of the number of A1 genes are λ0 = 1 and

λj =
∑

Pr(z1, . . . , zj)

{
E

j∏
i=1

(yi + zi1 − zi2 | z1, . . . , zj)

}
,

(j = 1, 2, . . . , 2N). (57)

In the Wright-Fisher model defined by (36) and (46), yi ≡ 0 and
z1 . . . zj have a multinomial distribution with index 2N and com-
mon parameter (2N)−1. Further, given zi, zi1 and zi2 have binomial
distributions with respective parameters 1− u and v. Thus

E(zi1 − zi2 | zi) = (1− u− v)zi

and

λj =
∑

Pr(z1, . . . , zj)(1− u− v)jz1 . . . zj

= (1− u− v)jE(z1 . . . zj) (58)

= (1− u− v)j{2N(2N − 1) . . . (2N − j + 1)/(2N)i},
j = 1, 2, . . . , 2N.

The conclusion of (52) has been used in reaching this formula. The
leading non-unit eigenvalue λ1 is 1−u−v and is thus independent of
N . This is extremely close to unity and suggests a very slow rate of
approach to stationarity in this model. The eigenvalues (58) apply
also in the one-way mutation model, for which we simply put v = 0
in (58).
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The Moran Model

No mutation

In this section we consider a model due to Moran (1958) which, in
contrast to the Wright-Fisher model and the Cannings model, has
the advantage of allowing explicit expressions for many quantities of
evolutionary interest, although, strictly, it applies only for haploid
populations (where each individual has only one gene, rather than
two, at the “A”locus under consideration).

Consider a haploid population in which, at time points t = 1, 2,
3, . . ., an individual is chosen at random to reproduce. After repro-
duction has occurred, an individual is chosen to die (possibly the
reproducing individual but not the new offspring individual). As is
discussed later, the model can be generalized by allowing mutation.

We consider first the simplest case where there is no mutation.
Suppose the population consists of 2N haploid individuals (we use
this notation to allow direct comparison with the diploid case), each
of whom is either A1 or A2. Suppose also that, at time t, the number
of A1 individuals is i. Then at time t + 1 there will be i − 1 A1

individuals if an A2 is chosen to give birth and an A1 individual is
chosen to die. The probability of this, under our assumptions, is

pi,i−1 = i(2N − i)/(2N)2. (59)

Similar reasoning shows that

pi,i+1 = i(2N − i)/(2N)2, (60)

pi,i = {i2 + (2N − i)2}/(2N)2. (61)

The matrix defined by these transition probabilities is a continu-
ant, so that standard theory of can be applied to it. In standard
continuant “birth-and-death” notation,

λi = µi = i(2N − i)/(2N)2, i = 0, 1, 2, . . . , 2N. (62)

It follows that the probability πi of fixation of A1, given currently i
A1 individuals, is

πi = i/2N, (63)

and that, using notation developed above,

t̄ij = 2N(2N − i)/(2N − j), j = 1, 2, . . . , i,

t̄ij = 2Ni/j, j = i + 1, . . . , 2N − 1. (64)
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Thus immediately

t̄i = 2N(2N − i)
i∑

j=1

(2N − j)−1 + 2Ni

2N−1∑
j=i+1

j−1, (65)

t̄∗ij = 2N(2N − i)j/{i(2N − j)}, j = 1, 2, . . . , i,

t̄∗ij = 2N, j = i + 1, . . . , 2N − 1, (66)

t̄∗i = 2N(2N − i)i−1

i∑
j=1

j(2N − j)−1 + 2N(2N − i− 1). (67)

An interesting example of these formulae is the case i = 1, corre-
sponding to a unique A1 mutant in an otherwise purely A2 popu-
lation. Here t̄∗1j = 2N for all j so that, given that the mutant is
eventually fixed, the number of A1 genes takes, on average, each
of the values 1, 2, . . . , 2N − 1 a total of 2N times. The conditional
mean fixation time is given by

t̄∗1 = 2N(2N − 1) (68)

birth-death events. The variance of the conditional absorption time
can also be written down but we do not do so here.

The eigenvalues of the matrix defined by (59) – (61) can be found
by using Cannings’ first theorem. Take any collection of j genes and
note that the probability that one of these is chosen to reproduce
is j/2N , with the same probability that one is chosen to die. For
this model a gene can be (and indeed usually is) one of its own
“descendants”. Using the notation of Canings’ first theorem, the
product y1y2 . . . yj can take only three values:

0 if one of these genes is chosen to die and the gene so chosen is
not chosen to reproduce,

2 if one of the genes is chosen to reproduce and none is chosen
to die,

1 otherwise.

Thus λ0 = 1 and

λj = E(y1y2 . . . yj)

= 2j(2N − j)/(2N)2 + 1− j(4N − j − 1)/(2N)2

= 1− j(j − 1)/(2N)2, j = 1, 2, . . . , 2N. (69)
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Various expressions for the corresponding eigenvectors have been
given. We are particularly interested in the largest non-unit eigen-
value and its associated eigenvectors. The required eigenvalue is

λ2 = 1− 2/(2N)2, (70)

and elementary calculations show that the corresponding right eigen-
vector r and left eigenvector `′ are

r = (0, 1(2N − 1), 2(2N − 2), . . . , i(2N − i), . . . , 1(2N − 1), 0)′

`′ =
(−1

2
(2N − 1), 1, 1, 1, . . . , 1,−1

2
(2N − 1)

)
.

Thus the asymptotic distribution of the number Xt of A1 genes for
large t, given Xt 6= 0, 2N , is uniform over the values {1, 2, 3, . . . , (2N−
1)}. The fact that λ2 is very close to unity for large N agrees with
the very large mean absorption times (65) for large N and interme-
diate values of i.

Mutation

If mutation from A1 to A2 is allowed (at rate u), with no reverse
mutation, A1 must eventually become lost, and interest centers on
properties of the time for this to occur. The model is now amended
to

pi,i−1 = {i(2N − i) + ui2}/(2N)2 = µi

pi,i+1 = i(2N − i)(1− u)/(2N)2 = λi

pi,i = 1− pi,i−1 − pi,i+1.

Standard continuant matrix theory can now be used to find t̄ij and
thus t̄i. We do not present explicit expressions since it will be more
useful (see below) to proceed via approximations. If mutation from
A2 to A1 (at rate v) is also allowed, the model becomes

pi,i−1 = {i(2N − i)(1− v) + ui2}/(2N)2 = µi

pi,i+1 = {i(2N − i)(1− u) + v(2N − i)2}/(2N)2 = λi (71)

pi,i = 1− pi,i−1 − pi,i+1.

The typical value φj in the stationary distribution φ for the number
of A1 genes is found from standard theory to be

φj = φ0
(2N)!Γ{j + A}Γ{B − j}
j!(2N − j)!Γ{A}Γ{B} (72)
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where Γ{·} is the gamma function, A = 2Nv/(1 − u − v), B =
2N(1− v)/(1− u− v), C = 2Nu/(1− u− v), D = 2N/(1− u− v)
and φ0 = Γ{B}Γ{A+C}/[Γ{D}Γ{C}]. Although these expressions
are exact they are rather unwieldy, and we consider in a moment a
simple approximation to φj.

The Markov chain defined by (71), having a stationary distribu-
tion and a continuant transition matrix, is automatically reversible.
This is not necessarily true for other genetical models: for exam-
ple it can be shown that the Wright–Fisher Markov chain defined
jointly by (36) and (46) is not reversible. What does reversibility
mean in genetical terms? All the theory we have considered so far
is prospective, that is, given the current state of a Markov chain,
probability statements are made about its future behavior. Recent
developments in population genetics theory often concern the ret-
rospective behavior: the present state is observed, and questions
are asked about the evolution leading to this state. For reversible
processes these two aspects have many properties in common, and
information about the prospective behavior normally yields almost
immediately useful information about the retrospective behavior.
We shall see later how the identity of prospective and retrospective
probabilities can be used to advantage in discussing various evolu-
tionary questions.

The eigenvalues of the matrix defined by (71) can be found by
applying Cannings’ second theorem. Here yi = 1 unless the ith gene
has been chosen to die, in which case yi = 0. Similarly zi, zi1 and
zi2 are zero unless the ith gene has been chosen to reproduce. It is
found after some calculation that λ0 = 1 and

λj = 1− j(u + v)

(2N)
− j(j − 1)(1− u− v)

(2N)2
, j = 1, . . . , 2N. (73)

These eigenvalues apply also in the case v = 0. The leading non-unit
eigenvalue is 1−(u+v)/(2N), and since 2N time units in the process
we consider may be thought to correspond to one generation in the
Wright–Fisher model, this agrees closely with the value 1 − u − v
found in (58) for that model.

Some approximations

Several of the exact results found above for the Moran model are
unwieldy, so we now give simple approximate expressions for them.
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For the case where there is no mutation, is evident from Eq. (65)
that

t̄(p) ≈ −(2N)2{p log p + (1− p) log(1− p)}, (74)

where p = i/2N . The similarity between this formula and (24) is
interesting. A factor of 2N may be allowed in comparing the two
to convert from birth-death events to generations. There remains
a further factor of 2 to explain, and we show later why this factor
exists.

In the case of one-way mutation, approximate values for t̄ij may
be calculated from (71), and from these we obtain an approximate
value for t̄i. This is

t̄i ≈ (2N)2(1− θ)−1
( p∫

0

x−1{(1− x)θ−1 − 1}dx

+

1∫

p

x−1(1− x)θ−1{1− (1− p)1−θ} dx
)

(75)

birth-death events, where p = i/(2N), x = j/(2N) and θ is defined
for the (diffusion) approximation to this Moran model as 2Nu. In
the particular case p = (2N)−1 this is, to a close approximation,

t̄i ≈ 2N
(
1 +

p∫

(2N)−1

x−1(1− x)θ−1 dx
)

(76)

birth-death events. When θ = 1 the form of t̄i may be found by
application of L’Hospital’s rule.

For the case of two-way mutation we put x = j/(2N), u =
α/(2N), v = β/(2N) in (72)and let j and 2N increase indefi-
nitely with x, α and β fixed. Using the Stirling approximation
Γ{y + a}/Γ{y} ∼ ya for large y, moderate a, the stationary proba-
bility φj in (72) becomes, approximately,

φj ∼ (2N)−1 Γ{α + β}
Γ{α}Γ{β}xβ−1(1− x)α−1, (77)

at least for values of x not extremely close to 0 or 1. This approxi-
mation expression is far simpler than the exact value (72).
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K-allele Models

The models considered so far can easily be extended to allow K
different alleles at the locus in question, where K is an arbitrary
positive integer. (For the ABO blood group system, for example,
K = 3.) In this case the population configuration at any time can
be described by a vector (X1, X2, . . . , XK), where Xi is the num-
ber of genes of allelic type Ai. If we assume, as is usual, that
X1 + X2 + . . . + XK = 2N , only K − 1 elements in the above vector
are independent. It is however convenient, for reasons of symmetry,
to retain all elements in the vector. The most interesting cases of
these models arise when there is no mutation and the K allele gen-
eralization of the Wright-Fisher, the Cannings or the Moran model
determines the evolution of the population. In this case any allele
Ai can be treated on its own, all other alleles being classed simply
as non-Ai, and much of the above theory can be applied. (On the
other hand, one problem for which the above theory is inadequate
is to find the mean time until loss of the first allele lost, the mean
time until loss of the second allele lost, and so on. This is a more
complex problem that we do not discuss.)

We consider in detail only the K-allele generalization of the model
Wright–Fisher (6), namely

Pr{Yi genes of allele Ai at time t + 1 | Xi genes of allele

i at time t, i = 1, 2, . . . , K}
=

(2N)!

Y1!Y2! . . . YK !
ψY1

1 ψY2
2 . . . ψYK

K (78)

where ψi = Xi/(2N). In this case the model (78) is in effect a
Cannings model and a straightforward generalization of the theory
for the Cannings model given above can be applied.

The eigenvalues of the matrix defined by (78) are precisely the
values in Eq. (52), where now λj has multiplicity (K +j−2)!/{(K−
2)!/j!}, (j = 2, 3, . . . , 2N). The eigenvalue λ0 = 1 has total mul-
tiplicity K. These eigenvalues have the interesting interpretation
(Littler, (1975)) that

Pr{at least j allelic types remain present at time t} ∼ const λt
j.
(79)

When mutation exists between all alleles there will exist a multi-
dimensional stationary distribution of allelic numbers. The means,
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variances and covariances in this distribution can be found by pro-
cedures analogous to those leading to (47) and (48). We consider
in detail only the case where mutation is symmetric: here the prob-
ability that any gene mutates is assumed to be u, and given that
a gene of allelic type Ai has mutated, the probability that the new
mutant is of type Aj is (K − 1)−1, (j 6= i). By symmetry, the mean
number of genes of allelic type Ai alleles in the stationary distribu-
tion must be 2N/K. However, it sometimes occurs that this is not
a likely value for the actual number of genes of any allelic type to
arise, and we see this best by finding the probability F that two
genes taken at random from the population are of the same allelic
type. Generalizing the argument that led to (50) we find, ignoring
terms of order u2, that

F =
(
(2N)−1+{1−(2N)−1}F)

(1−2u)+
(
1−(2N)−1

)
(1−F )

(
2u/(K−1)

)
.

If we write θ = 4Nu, this gives

F ≈ (K − 1 + θ)/(K − 1 + Kθ). (80)

This expression agrees with that in (50) for K = 2. For large K,

F ≈ (1 + θ)−1, (81)

an expression we return to later.

These formulas demonstrates an important theme. In both for-
mulas, if θ is small, then F ≈ 1. This implies that it is very likely
that one or other allele appears with high frequency with the re-
maining alleles having negligible frequency, despite the fact that all
alleles are selectively equivalent. The imbalance arises because of
stochastic effects, and is quite different from that predicted by con-
sidering the mean allele frequencies only.

The eigenvalues of the matrix defined by the symmetric mutation
model are the values (52) if λi is multiplied by {1−uK(K− 1)−1}i.
The multiplicity of λi is (i + K − 2)!/{i!(K − 1)!}.

In view of the comments concerning the Cannings model made
above it is plausible that Eqs. (80) and (81) hold with θ defined
by θ = 4Nu/σ2. There is also a K-allele Moran model which allows
various exact formulae, but we do not consider this here.



28

Infinitely Many Alleles Models

Introduction

In this section we consider the “infinitely many alleles” versions
of the Wright–Fisher, the Cannings and the Moran models. The
discussion of the Wright–Fisher model is more extensive than that
for the remaining models. This is not because it is more important
than the other two, but arises for two reasons. The first is that
calculations for this model are comparatively straightforward, and
the second is that results for this model can be taken over almost
directly for the Cannings model, with an appropriate change in the
definition of the parameter θ arising in all the formulas found. This
definition is given below in the section on the Cannings infinitely
many alleles model.

Results for the Wright–Fisher and the Cannings infinitely many
alleles models are usually approximations. By contrast, the infinitely
many alleles Moran model allows many exact calculations.

Mutation is intrinsic to all infinitely many alleles models, but the
nature of the new mutants is different from anything assumed so far,
the key difference being that all mutant genes are assumed to be of a
new allelic type, not currently or previously seen in the population.
This has several important implications that are discussed in detail
below.

The infinitely many alleles model is central for the theory of
molecular population genetics, for reasons discussed later.

The Wright–Fisher Infinitely Many Alleles Model

The Wright–Fisher infinitely many alleles model follows the generic
binomial sampling characteristic of all Wright–Fisher models. The
nature of the mutation mechanism, discussed above, implies that
if the mutation rate (always to new allelic types) is u, and if in
generation t there are Xi genes of allelic type Ai (i = 1, 2, 3, . . .),
then the probability that in generation t+1 there will be Yi genes of
allelic type Ai, together with Y0 new mutant genes, all of different
novel allelic types, is

Prob{Y0, Y1, Y2, . . . | X1, X2, . . .} =
(2N)!

ΠYi!
ΠπYi

i , (82)
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where π0 = u and πi = Xi(1− u)/(2N), i = 1, 2, 3, . . . .
This model differs fundamentally from previous mutation models

(which allow reverse mutation) in that since each allele will sooner
or later be lost from the population, there can exist no nontrivial
stationary distribution for the frequency of any allele. Nevertheless
we are interested in stationary behavior, and it is thus important to
consider what concepts of stationarity exist for this model. To do
this we consider delabeled configurations of the form {a, b, c, . . .},
where such a configuration implies that there exist a genes of one
allelic type, b genes of another allelic type, and so on. The spe-
cific allelic types involved are not of interest. The possible config-
urations can be written down as {2N}, {2N − 1, 1}, {2N − 2, 2},
{2N −2, 1, 1}, . . . , {1, 1, 1, . . . 1} in dictionary order: The number of
such configurations is p(2N), the number of partitions of 2N into
positive integers. For small values of N values of p(2N) are given
by Abramowitz and Stegun (1965, Table 24.5), who also provide
asymptotic values for large N . It is clear that (82) implies certain
transition probabilities from one configuration to another. Although
these probabilities are extremely complex and the Markov chain of
configurations has an extremely large number of states, nevertheless
standard theory shows that there exists a stationary distribution of
configurations, some of the characteristics of which we now explore.

We consider first the probability that two genes drawn at random
are of the same allelic type. For this to occur neither gene can be a
mutant and, further, both must be descended from the same parent
gene (probability (2N)−1) or different parent genes which were of

the same allelic type. Writing F
(t)
2 for the desired probability in

generation t, we get

F
(t+1)
2 = (1− u)2

(
(2N)−1 + {1− (2N)−1}F (t)

2

)
. (83)

At equilibrium, F
(t+1)
2 = F

(t)
2 = F2 and thus

F2 = {1− 2N + 2N(1− u)−2}−1 ≈ (1 + θ)−1, (84)

where, as as is standard for Wright–Fisher models, θ = 4Nu. This
is identical to the limiting (K → ∞) value in (81). In view of the
fact that there is no concept of the stationary distribution for the
frequency of any allele in the infinitely many alleles case, this fact
is perhaps surprising.
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Consider next the probability F
(t+1)
3 that three genes drawn at

random in generation t + 1 are of the same allelic type. These
three genes will all be descendants of the same gene in generation t,
(probability (2N)−2), of two genes (probability 3(2N − 1)((2N)−2))
or of three different genes (probability (2N − 1)(2N − 2)((2N)−2)).
Further, none of the genes can be a mutant, and it follows that

F
(t+1)
3 = (1−u)3(2N)−2

(
1 + 3(2N − 1)F

(t)
2 + (2n− 1)(2N − 2)F

(t)
3

)
.

(85)

At equilibrium F
(t+1)
3 = F

(t)
3 = F3, and rearrangement in (85) yields

F3 ≈ 2(2 + θ)−1F2 ≈ 2!/[(1 + θ)(2 + θ)]. (86)

Continuing in this way we find

F
(t+1)
i = (1− u)i[(2N − 1)(2N − 2) · · · (2N − i + 1)(2N)1−iF

(t)
i

+ terms in F
(t)
i−1, . . . , F

(t)
2 ] (87)

and that for small values of i,

Fi ≈ (i− 1)!/[(1 + θ)(2 + θ) · · · (i− 1 + θ)]. (88)

We can also interpret Fi as the probability that a sample of i genes
contains only one allelic type, or, in other words, that the sample
configuration is {i}. This conclusion may be used to find the proba-
bility of the sample configuration {i− 1, 1}. The probability that in
a sample of i genes, the first i− 1 genes are of one allelic type while
the last gene is of a new allele type is Fi−1−Fi. The probability we
require is, for i ≥ 3, just i times this, or

Prob{i−1, 1} = i{Fi−1−Fi} ≈ i(i−2)!θ/[(1+θ)(2+θ) · · · (i−1+θ)].
(89)

For i = 2 the required probability is

Prob{1, 1} ≈ θ/(1 + θ). (90)

The probabilities of other configurations can built up in a similar

way. We illustrate this by considering the probability F
(t+1)
2,2 that, of

four genes drawn at random in generation t+1, two are of one allelic
type and two of another. Clearly none of the genes can be a mutant,
and furthermore they will be descended from four different parent
genes of configuration {2, 2}, from three different parent genes of
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configuration {2, 1}, the singleton being transmitted twice, or from
two different parent genes, both transmitted twice. Considering the
probabilities of the various events, we find

F
(t+1)
2,2 = (1− u)4(2N)−3

(
(2N − 1)(2N − 2)(2N − 3)F

(t)
2,2

+ 2(2N − 1)(2N − 2)F
(t)
2,1 + 3(2N − 1)F

(t)
1,1

)
. (91)

Retaining only higher-order terms and letting t →∞, we obtain

F2,2 ≈ (3 + θ)−1F2,1 = 3θ/
(
(1 + θ)(2 + θ)(3 + θ)

)
. (92)

Continuing in this way we find an approximating partition proba-
bility formula for a sample of n of genes, where is is assumed that
n << N . This formula can be presented in various ways. Perhaps
the most useful formula arises if we define A = (A1, A2, . . . , An) as
the vector of the (random) numbers of allelic types each of which is
represented by exactly j genes in the sample. With this definition,

Prob(A = a) =
n! θ

P
aj

1a12a2 · · · nan a1! a2! · · · an! Sn(θ)
. (93)

In this expression, a = (a1, a2, . . . , an) and Sn(θ) is defined by

Sn(θ) = θ(θ + 1)(θ + 2) · · · (θ + n− 1)

. The expression (93) was derived by Ewens (1972) and Karlin and
McGregor (1972). It is necessary that

∑
jAj =

∑
jaj = n, and

it is convenient to denote
∑

Aj, the (random) number of different
allelic types seen in the sample, by K, and

∑
j aj, the corresponding

observed number in a given sample, by k.
By suitable summation in (93) the probability distribution of the

random variable K may be found as

Prob (K = k) = |Sk
n|θk/Sn(θ), (94)

where |Sk
n| is the coefficient of θk in Sn(θ). Thus |Sk

n| is the absolute
value of a Stirling number of the first kind. From (94), the mean of
K is

E(K) =
θ

θ
+

θ

θ + 1
+

θ

θ + 2
+ · · ·+ θ

θ + n− 1
, (95)

the variance of K is

var(K) = θ

n−1∑
j=1

j

(θ + j)2
, (96)
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and the probability that K = 1 is

(n− 1)!

(θ + 1)(θ + 2) · · · (θ + n− 1)
. (97)

A formula equivalent to (93) is the following. Suppose that in
the sample we observe k different allelic types. We label these in
some arbitrary order as types 1, 2, . . . , k. Then the probability that
K = k and also that with the types labelling in the manner chosen,
there are n1, n2, . . ., nk genes respectively observed in the sample
of these various types, is

n!θk

k!n1n2 · · ·nkSn(θ)
. (98)

We now turn to eigenvalue calculations.Equation (83) can be
rewritten in the form

F
(t+1)
2 − F

(∞)
2 = (1− u)2{1− (2N)−1}{F (t)

2 − F
(∞)
2 }, (99)

and this implies that (1 − u)2{1 − (2N)−1} is an eigenvalue of
the Markov chain configuration process discussed above. A sim-
ilar argument using (85) shows that a second eigenvalue is (1 −
u)3{1 − (2N)−1}{1 − 2(2N)−1}. Equations (87) and (91) suggest
that (1− u)4{1− (2N)−1}{1− 2(2N)−1}{1− 3(2N)−1} is an eigen-
value of multiplicity 2. It is found more generally that

λi = (1− u)i{1− (2N)−1}{1− 2(2N)−1} · · · {1− (i− 1)(2N)−1}
(100)

is an eigenvalue of the configuration process matrix and that its
multiplicity is p(i) − p(i − 1), where p(i) is the partition number
given above. This provides a complete listing of all the eigenvalues.

We consider next the mean number of alleles existing in the pop-
ulation at any time. Any specific allele Am will be introduced into
the population with frequency (2N)−1, and after a random num-
ber of generations will leave it, never to return. The frequency of
Am is a Markovian random variable with transition matrix given
in (36), with ψi defined immediately below (36). There will exist
a mean time E(T ), measured in generations, that Am remains in
the population. The mean number of new alleles to be formed each
generation is 2Nu, and the mean number to be lost each generation
through mutation and random drift is E(K)/E(T ), where E(K) is
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the mean number of alleles existing in each generation. It follows,
by balancing the number of alleles gained each generation with the
number lost, that at stationarity,

E(K) = 2NuE(T ). (101)

An approximation to E(T ) is found by putting p = (2N)−1 in (39).
This gives, to a close approximation,

E(K) ≈ θ +

1∫

(2N)−1

θx−1(1− x)θ−1 dx. (102)

A more detailed approximation is possible. If E(K(x1, x2)) is the
mean number of alleles present in the population with frequency in
any interval (x1, x2) ((2N)−1 ≤ x1 < x2 ≤ 1), then

E(K(x1, x2)) ≈
x2∫

x1

θx−1(1− x)θ−1 dx. (103)

This equation can be used to confirm (95). An allele whose popula-
tion frequency is x is observed in a sample of size n with probability
1− (1− x)n. From this and (103) it follows that the mean number
of different alleles observed in a sample of size n is approximately

1∫

0

{1− (1− x)n}θx−1(1− x)θ−1 dx, (104)

and the value of this expression is equal to that given in (95). The
function

φ(x) = θx−1(1− x)θ−1 (105)

is called the “frequency spectrum”of the process considered, and
will be discussed in detail by Dr Griffiths. Ignoring small-order
terms, it has the (equivalent) interpretations that the mean number
of alleles in the population whose frequency is in (x, x+δx), and also
the probability that there exists an allele in the population whose
frequency is in this range, is, for small δx, equal to θx−1(1−x)θ−1δx.

The frequency spectrum can be used to arrive at further results
reached more laboriously by discrete distribution methods. Thus,
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for example,

Prob{only one allele observed in a sample of n genes}

≈ θ

1∫

0

xn{x−1(1− x)θ−1} dx

= (n− 1)!/
(
(1 + θ)(2 + θ) · · · (n− 1 + θ)

)

and this agrees with the expression in (88) with the notational
change of n to i. More complex formulas such as (93) can be re-
derived using multivariate frequency spectra, but we do not pursue
the details.

The form of the frequency spectrum also shows that when θ is
small, the most likely situation to arise at any time is that where
one allele has a high frequency and the remaining alleles are all at
a low frequency. This occurs for two reasons. The first of these is
historical: Different alleles enter the population an different times,
and an “older” allele has had more time to reach a high frequency
than a “younger” allele. Second, imbalances in allelic frequencies
arise through stochastic fluctuations, as in the K-allele model as
discussed below (81). This imbalance agrees qualitatively with that
found surrounding (81) for the K-allele model.

A final result obtained from the frequency spectrum is the fol-
lowing. Practical population geneticists have long been interested in
the degree of genetic variation present in a population. In practice
there will almost always be some variation, so that in practice what
is meant is “non-trivial variation”, or “non-trivial polymorphism.”
The classic definition of such a polymorphism, given by Harris (1980,
p. 331), is that a locus is polymorphic if the population frequency
of the most frequent allele in the population of interest is no more
than 0.99. Thus in this sense a population is not polymorphic if the
frequency of any allele exceeds 0.99. From the frequency spectrum,
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the probability of polymorphism is

1− θ

1∫

0.99

x−1(1− x)θ−1 dx (106)

≈ 1− θ

1∫

0.99

(1− x)θ−1 dx

= 1− (0.01)θ.

For θ = 0.1, for example, this probability is only about 0.37. How-
ever, for larger values of θ, for example for θ > 1, this probability
exceeds 0.99.

Several results for the infinitely many alleles model can be ob-
tained directly from two-allele theory. For example, we may wish
to find the mean number of generations until all alleles currently
existing in the population have been replaced by new alleles, not
currently existing in the population. This may be found from two-
allele theory by identifying all currently existing alleles with the
allele A1, initially having current frequency p = 1 in the population,
and seeking the mean number of generations until loss of this allele.
This expression is given in (43), or more accurately in (44).

Although the theory is by no means clear, it is plausible that to a
first approximation, all the results given in this section continue to
apply in more complicated Wright–Fisher models, involving perhaps
two sexes or geographical structure, if the parameter θ is defined as

θ = 4Neu, (107)

where Ne is one or other version of the effective population size (a
concept that is discussed later).

The Cannings Infinitely Many Alleles Model

The reproductive mechanism in the nonoverlapping generations Can-
nings infinitely many alleles model follows that of the general prin-
ciples of the Cannings two-allele model. That is, the model allows
any reproductive scheme consistent with the exchangeability and
symmetry properties of the two-allele model. The mean number of
offspring genes from any “parental” gene is 1, and the variance of
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the number of offspring genes is σ2, necessarily the same for each
parental gene. The mutation assumptions are as described above,
in particular that all mutant offspring genes are assumed to be of
novel allelic types.

Many of the results of the Wright–Fisher infinitely many alleles
model apply for the Cannings model, at least to a close approxi-
mation, provided that the parameter θ, arising in many for-
mulas associated with the Wright-Fisher model, is replaced
throughout by θ/σ2. Therefore we do not explore the Cannings
model further, and instead use Wright–Fisher formulae, with this
change of definition of θ, to apply for the Cannings model.

The Moran Infinitely Many Alleles Model

The Moran infinitely many alleles model is the natural extension
to the infinitely many alleles case of the Moran two alleles model.
Haploid individuals, which we may identify with genes, are created
and lost through a birth and death process, as in the two-alleles case,
with the standard the infinitely many alleles model assumptions that
an offspring gene is a mutant with probability u and that any new
mutant is of an entirely novel allelic type.

The stochastic behavior of the frequency of any allelic type in the
population is then governed by (71), implying (as for the Wright-
Fisher and Cannings models) that there can be no concept of sta-
tionarity of the frequency of any nominated allelic type. On the
other hand there will exist a concept of the stationary distribution
of allelic configurations. The possible configurations of the process
are the same as those for those models, but for the Moran model
an exact population probability can be given for each configura-
tion. Suppose that βj (j = 1, 2, . . . , 2N) is the number of allelic
types with exactly j representative genes in the population, so that∑

jβj = 2N . The quantity βj is the population analogue of the
sample number αj in (93). The exact stationary distribution of the
population configuration process is

Prob(β1, β2, . . . , β2N) =
(2N)! θ

P
βj

1β12β2 · · · (2N)β2N β1!β2! · · · β2N ! S2N(θ)
.

(108)
Here Sj(·) is defined below (93) and θ is defined for this model by

θ = 2Nu/(1− u). (109)
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This is a different definition of θ than that applying for
the Wright–Fisher model, and is always to be used as the
definition of θ when referring to the Moran model.

The expression (108) is of exactly the same form as (93), with
n replaced by 2N and αj by βj. Thus several of the calculations
arising from (93) are exact for the Moran population process. For
example, the distribution of the number K2N of allelic types in the
population is given exactly by (94), with n replaced by 2N. Thus,
immediately from (94), the probability that K2N = 1 is, exactly,

(2N − 1)!

(1 + θ)(2 + θ) · · · (2N − 1 + θ)
. (110)

The mean of K2N is given by (95), with n replaced by 2N and θ
defined by (109), and the variance K2N is

var(K2N) = θ

2N−1∑
j=1

j

(θ + j)2
. (111)

An exact expression is available for the Moran model (discrete)
frequency spectrum, for which (105) gives the approximate Wright–
Fisher model formula. To find this we consider first the “two-allele”
model (71). In the infinitely many alleles case we think of A1 as
a new arisen allele formed by mutation and A2 as all other alleles.
Standard theory can be used to find the mean number µ(T ) of birth
and death events before the certain loss of A1 from the population.
This is

µ(T ) = (2N + θ)
2N∑
j=1

j−1

((
2N

j

)(
2N + θ − 1

j

)−1
)

, (112)

The form of ergodic argument that led to (102) shows that at sta-
tionarity, the mean of the number K2N of different allelic types
represented in the population is uµ(T ), which is

θ

2N∑
j=1

j−1

((
2N

j

)(
2N + θ − 1

j

)−1
)

, (113)

where here and throughout we use the standard gamma function
definition(

M

m

)
=

Γ(M + 1)

m!Γ(M −m + 1)
=

M(M − 1) · · · (M −m + 1)

m!
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for non-integer M. The expression (113) provides the further infor-
mation that the typical jth term gives the stationary mean number
of alleles arising with j representing genes in the population at any
time. In other words, the exact frequency spectrum for the Moran
model is

θ j−1

((
2N

j

)(
2N + θ − 1

j

)−1
)

, j = 1, 2, . . . , 2N. (114)

A standard asymptotic formula for the gamma function for large N
shows the parallel between this exact expression with the diffusion
theory frequency spectrum (105).

Various special cases of (114) are of interest. For example, when
θ = 1, (114) simplifies to j−1, in which form the parallel with the
Wright-Fisher approximation (105) is obvious. However, the differ-
ent formulae for θ for the two models should be kept in mind when
this comparison is made.

Two of the above expressions are of independent interest. First,
the expression (112) has the further interpretation that its typical
term is the mean number of birth-and-death events for which there
are exactly j copies of the allele in question before its loss from the
population. It is interesting to evaluate the expression in (112) for
specific values of θ. When θ = 2, it is about 2N log(2N) birth and
death events, or about log(2N) “generations”. The corresponding
approximation for the Wright–Fisher model, found from (39), is also
log(2N) generations, but this formal equality is misleading because
of the different definitions of θ in the two cases.

Second, the expression (113) simplifies to

θ

θ
+

θ

θ + 1
+

θ

θ + 2
+ · · ·+ θ

θ + 2N − 1
.

This is identical to the expression given in (95), with n replaced by
2N , as we know it must be.

Many further exact results for the Moran model are available.
Here are several.

First, if at any time there is only one allele in the population,
we say that that allele is “quasi-fixed” in the population. (We do
not use the expression “fixed”, since in an infinitely many alleles
model this allele will eventually be lost from the population.) The
probability that a new mutant eventually becomes quasi-fixed can
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be found as follows. Call the allelic type of the new mutant A1

and group together all other genes as “A2” genes. Then standard
continuant Markov chain theory shows that the probability that a
new mutant allele eventually becomes quasi-fixed in the population
is C−1, where

C =
2N−1∑
j=0

(
2N + θ − 1

j

)((
2N − 1

j

))−1

. (115)

This is a different probability than the probability that, at any
specified time, the population is “quasi-fixed” for one or other allele.
This latter probability is given by the j = 2N term in the exact
Moran frequency spectrum (114), namely

θ

2N

((
2N + θ − 1

2N

))−1

, (116)

or, more simply,

(2N − 1)!

(1 + θ)(2 + θ) · · · (2N − 1 + θ)
. (117)

To illustrate the difference between the probability defined by (115)
and the probability defined by (117), when θ = 1 the former proba-
bility is

1

2N

(
1 +

1

2
+

1

3
+ · · ·+ 1

2N

)−1
(118)

while the latter probability is 1
2N

.
(Parenthetically, no exact probability for quasi-fixation of one or

other allele is known for the Wright-Fisher model. The most accu-
rate approximation available is that of Watterson (1975), namely

exp(−0.1003θ)Γ(1 + θ)(2N)−θ. (119)

This expression gives numerical values quite close to those given by
(117) for a wide range of values of θ, although the different defi-
nitions of θ for Moran and Wright-Fisher models must be kept in
mind when making this comparison.)

Second, it is immediate that the probability that a gene drawn at
random from the population is of an allelic type represented j times
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in the population is found by multiplying the expression in (114) by
j/(2N). This gives

θ(2N)−1

((
2N

j

)(
2N + θ − 1

j

)−1
)

(120)

for this probability. We check that the sum of this expression over
j = 1, 2, . . . , 2N is 1.

Third, (113) allows an exact calculation of the probability of
population polymorphism, as defined by Harris. Any allele having
a frequency exceeding 0.99 must be the most frequent allele in the
population, and at most one allele can have such a frequency. Thus
the probability that the most frequent allele in the population has
frequency exceeding 0.99 is the mean number of alleles with fre-
quency exceeding 0.99. Taking 0.99(2N) as an integer M, (113)
shows that the Harris probability of polymorphism is

1− θ

2N∑
j=M+1

j−1

((
2N

j

)(
2N + θ − 1

j

)−1
)

. (121)

This is close to 1 − (0.01)θ, the approximate value found above
for the Wright–Fisher model using a diffusion approximation. As
with other such comparisons, this apparent similarity is misleading
because of the different definitions of θ in the two models.

The final result concerns the mean number of birth and death
events until all alleles present in the population at any time are lost.
This is the Moran model analogue (once an adjustment is made
between generations and birth-death events) for the mean number
of generations until allele current alleles in a population are lost in
the Wright-Fisher model, an approximation for which is given in
(43), or more accurately in (44). In the case of the Moran model
an exact calculation is available, namely that the required mean
number of birth and death events is

2N(2N + θ)(θ − 1)−1

2N∑
j=1

j−1

(
1−

(
2N

j

)(
2N + θ − 1

j

)−1
)

.

(122)
(A formula different from (122), found by applying l’Hôpital’s rule,
applies for the case θ = 1.) In the case θ = 2, the expression (122)
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gives, exactly, 8N2(N +1)/(2N +1), or about 4N2, birth and death
events. This can be thought of as corresponding to 4N “genera-
tions”, which appears to agree closely with the Wright–Fisher ap-
proximation in (45). This agreement is, however, misleading, since
the definitions of θ differ in the two models.

There are several further comments to make about (122). First,
The typical (jth) term in (122) is the mean number of birth and
death events for which there are exactly j genes present of the var-
ious original alleles in the population before the eventual loss of all
these alleles. Thus the expression (122) gives more information than
might otherwise be thought.

Second, although the identity is not immediately obvious, the
expression in (122) is identical to the expression

2N(2N + θ)
2N∑
j=1

1

j(j + θ − 1)
. (123)

We shall see later that the individual terms in the sum also have an
important interpretation, in this case concerning the past history of
the population rather than its future evolution.

Third, recalling the definition θ = 2Nu/(1 − u) for the Moran
model, the expression in (123) may be written equivalently as

2N∑
j=1

1

vj + wj

, (124)

where

vj =
ju

2N
, wj =

j(j − 1)(1− u)

(2N)2
. (125)

We shall later see why expressions of the form defined by (124) and
(125) arise.

Further exact Moran model results, relating to “time” and “age”
properties, will be discussed later.

Complications and the effective population size

Introduction

All the theory described above (and also that described later) makes
a large number of assumptions, genetical, modelling and demo-
graphic. The main genetical assumption is that there is no selection
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involved between the alleles that we consider. Clearly, and espe-
cially in light of the Darwinian paradigm, this means that a very
large proportion of population genetics theory, that relating to se-
lection, is not considered. Another important aspect of reality that
is ignored is the existence, for the great majority of species of in-
terest to us, of two sexes and the diploid nature of the individuals
in those populations. From the modelling point of view, the three
models considered (Wright-Fisher, Cannings and Moran) cannot be
expected to describe accurately any real-life population, even though
they do provide some insights into the evolutionary genetic behav-
ior of real populations. Finally, many demographic features, such as
the geographical dispersion of a population and changes over time
in the size of the population of interest, have been ignored.

The concept of the effective population size is meant to address
some of these deficiencies, and in this section we define this concept
and examine some of its properties.

Three concepts of the effective population size

Even though the Wright-Fisher model is less plausible than several
other available models as a description of biological reality, it has,
perhaps for historical reasons, assumed a central place in population
genetics theory. This model has three properties that relate to the
population size:

(i) its maximum non-unit eigenvalue = 1− (2N)−1,

(ii) the probability that two genes taken at random are descendants
of the same parent gene = (2N)−1,

(iii) var{x(t + 1) | x(t)} = x(t){1 − x(t)}/(2N), where x(t) is the
fraction of A1 genes in generation t.

In view of these properties it is perhaps natural, if the Wright–
Fisher model (6) is to be used as a standard, to define the effective
population size in diploid models that are more complicated and
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realistic then (6) in the following way:

N (e)
e = eigenvalue effective population size = 1

2
(1− λmax)

−1,(126)

N (i)
e = inbreeding effective population size = (2π2)

−1, (127)

N (v)
e = variance effective population size

=
x(t){1− x(t)}

2 var{x(t + 1) | x(t)} . (128)

Here λmax is the largest nonunit eigenvalue of the transition matrix
of the model considered and π2 is the probability, in this model, that
two genes taken at random in any generation are descendants of the
same parent gene. Similarly, var{x(t+1)} is the conditional variance
of the frequency of A1 in generation t + 1 in the more complicated
model, given the value of this frequency in generation t.

A fourth concept of effective population size, namely the mu-
tation effective size, is also possible, but we do not consider this
concept here.

Application to the Cannings model

In this section we consider the application of the effective population
size concept for the Cannings model, and limit attention for the
moment to those versions of the model where generations do not
overlap. Equations (54) and (126) show immediately that for these

models, the eigenvalue effective population size N
(e)
e is given by

N (e)
e =

(
N − 1

2

)
/σ2, (129)

where σ2 is the variance in the number of offspring genes from any
given gene. Equations (56) and (128) show that the variance effec-

tive population size N
(v)
e is given by

N (v)
e =

(
N − 1

2

)
/σ2. (130)

A value for N
(i)
e can be found in the following way. Suppose that

the ith gene in generation t leaves mi offspring genes in generation
t + 1, (

∑
mi = 2N). Then the probability, given m1, . . . , m2N , that

two genes drawn at random in generation t + 1 are descendants of
the same gene is

2N∑
i=1

mi(mi − 1)/{2N(2N − 1)}. (131)
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The probability π2 in (127) is the expected value of this random
variable. Now mi has mean unity and variance σ2, so that, on
taking expectations, π2 = σ2/(2N − 1). From this,

N (i)
e =

(
N − 1

2

)
/σ2. (132)

It follows from these various equations that for the Cannings model,
all three effective population sizes are equal.

One application of this conclusion is the following. If leading
terms only are retained, all three definitions of the effective pop-
ulation size in the Cannings model are N/σ2. From the remarks
surrounding (107), it is plausible that the various Wright–Fisher
infinitely many alleles model results apply for the nonoverlapping
generation Cannings model if θ is defined wherever it occurs by
4Neu. That is, to a close approximation, we define θ for the Can-
nings model by

θ = 4Nu/σ2. (133)

As stated earlier, the definition of θ given in (133) is to be used
whenever the Cannings model is discussed.

Application to the Moran model

The three definitions of the effective population size given above are
not appropriate for models where generations overlap. If we write
Ne for any one of the effective population sizes defined in (126)–
(128), it seems reasonable for such models to define the effective
population size as Nek/(2N), where k is the number of individuals
to die each time unit. Since k = 2N for models where generations
do not overlap, this leaves (126)–(128) unchanged for such models.
For the Moran model, where k = 1, this convention yields

N (e)
e = N (i)

e = N (v)
e = 1

2
N. (134)

The equations show that the effective population size in the Moran
model is half that in the Wright–Fisher model. We now discuss the
reason for this.

Arguments parallel to those leading to (24) show that if two al-
leles A1 and A2 are allowed in the population, the mean time until
fixation of one or other allele in the Cannings model is

t̄(p) ≈ −(4N − 2){p log p + (1− p) log(1− p)}/σ2, (135)
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where p is the initial frequency of A1 and σ2 is defined above. This
formula explains the factor of 2 discussed after equation (74). In
the Wright–Fisher model σ2 ≈ 1 while in the Moran model σ2 ≈
2/(2N). Setting aside the factor 2N as explained by the conversion
from generations to birth and death events, it is clear that the crucial
factor is the difference between the two models in the variance in
offspring distribution.

Diploid organisms

So far we have ignored the diploid nature of most organisms of
interest, and we now consider a definition of effective population
size for the diploid case. We do this here for a Cannings model, and
devise an inbreeding effective population number that allows for the
diploid nature of the organisms in the population. This number will

be denoted N
(id)
e , and is defined as the reciprocal of the probability

that two genes taken at random in generation t + 1 are descended
from the same individual in generation t. This is tantamount, in
the Cannings model, to selecting two genes at random in generation
t and asking whether the two genes drawn at random in generation
t + 1 are both descended from one or other or both of these. In the
notation of (131), the probability of this event can be written as the
expected value of

N∑
i=1

(mi + mN+i)(mi + mN+i − 1)/{2N(2N − 1)}. (136)

It is not hard to see this leads to

N (id)
e =

4N − 2

σ2
d + 2

, (137)

where σ2
d is the variance of the number of offspring genes from each

(diploid) individual. It is therefore necessary to extend the Cannings
model to the diploid case. We define a diploid Cannings model as
one for which the concept of exchangeability relates to monoecious
diploid individuals. We also assume that the gene transmitted by
any individual to any offspring is equally likely to be each of the two
genes in that individual, is independent of the gene(s) transmitted
by this individual to any other offspring, and is also independent of
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the genes transmitted by any other individual. With these conven-
tions it can be shown that

σ2 =
σ2

d + 2

4
, (138)

where σ2 is the Cannings model gene “offspring number” variance,
and from this it follows that the expressions in (132) and (137) are
identical.

More realistic Wright-Fisher models

We turn next to the second class of models where a definition of ef-
fective population size is useful, namely those Wright–Fisher models
which attempt to incorporate biological complexity more than does
the simple Wright–Fisher model (6).

The first model considered allows for the existence of two sexes.
Suppose in any generation there are N1 diploid males and N2 diploid
females, with N1 + N2 = N . The model assumes that the genetic
make-up of each individual in the daughter generation is found by
drawing one gene at random, with replacement, from the male pool
of genes, and similarly one gene with replacement from the female
pool. If X1(t) represents the number of A1 genes among males in
generation t and X2(t) the corresponding number among females,
then X1(t + 1) can be represented in the form

X1(t + 1) = i(t + 1) + j(t + 1), (139)

where i(t+1) has a binomial distribution with parameter X1(t)/(2N1)
and index N1, and j(t + 1) has a binomial distribution with pa-
rameter X2(t)/(2N2) and index N1. A similar remark applies to
X2(t+1), where now the index is N2 rather than N1. Evidently the
pair {X1(t), X2(t)} is Markovian, and there will exist a transition
matrix whose leading nonunit eigenvalue we require to find so that

we can calculate N
(e)
e .

To do this it is necessary to find some function Y (X1, X2) which
is zero in the absorbing states of the system, positive otherwise, and
for which

E[Y {X1(t + 1), X2(t + 1)} | X1(t), X2(t)] = λY (t) (140)

for some constant λ. Such a function always exists, but some trial
and error is usually necessary to find it. In the present case it is
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found, after much labor, that a suitable function is

Y (X1, X2) = 1
2
C{X1(2N1 −X1)(2N1)

−2 + X2(2N2 −X2)(2N2)
−2}

+ {1− (X1 −N1)(X2 −N2)N
−1
1 N−1

2 }, (141)

where
C = 1

2
{1 + (1− 2N−1

1 − 2N−1
2 )1/2}.

With this definition the eigenvalue λ becomes

λ = 1
2
[1− (4N1)

−1 − (4N2)
−1 + {1 + N2(4N1N2)

−2}1/2], (142)

or approximately

λ ≈ 1− (N1 + N2)(8N1N2)
−1. (143)

From this result and (126) it follows that to a close approximation,

N (e)
e = 4N1N2N

−1. (144)

If N1 = N2 (= 1
2
N), then N

(e)
e ≈ N , as we might expect, while if

N1 is very small and N2 is large, N
(e)
e ≈ 4N1. This latter value is

sometimes of use in certain animal-breeding programs.
The inbreeding population size is found much more readily. Two

genes taken at random in any generation will have identical parent
genes if both are descended from the same “male” gene or both from
the same “female” gene. The probability of identical parentage is
thus

π2 = 1
2

N − 1

2N − 1
{(2N1)

−1 + (2N2)
−1},

and from this it follows that

N (i)
e = (2π2)

−1 ≈ 4N1N2N
−1. (145)

The variance effective population size cannot be found so readily,
and indeed strictly it is impossible to use (128) to find such a quan-
tity, since an equation of this form does not exist in the two-sex case
we consider. The fraction of A1 genes is not a Markovian variable
and in particular, using the notation of (128), the variance of x(t+1)
cannot be given in terms of x(t) alone. This indicates a real defi-
ciency in this mode of definition of effective population size. On the
other hand, sometimes there exists a “quasi-Markovian” variable
exists in terms of which a generalized expression for the variance



48

effective population size may be defined. In the present case the
weighted fraction of A1 genes, defined as

x(t) = X1(t)/(4N1) + X2(t)/(4N2)

has the required quasi-Markovian properties, and

var{x(t + 1) | x(t)} = x(t){1− x(t)}N(8N1N2)
−1 + O(N−2

1 , N−2
2 ).

From this a generalized variance effective population size may be
defined, in conjunction with (128), as

N (v)
e = 4N1N2N

−1. (146)

Thus for this model, N
(e)
e ≈ N

(i)
e ≈ N

(v)
e , although strict equality

does not hold for any of these relations.
We return now to the case of a monoecious population and con-

sider complications due to geographical structure. A simplified
model for this situation which, despite its obvious biological un-
reality, is useful in revealing the effect of population subdivision,
has been given by Moran (1962).

It is supposed that the total population, of size N(H +1), is sub-
divided into H + 1 sub-populations each of size N , and that in each
generation K genes chosen at random migrate from subpopulation
i to subpopulation j for all i, j (i 6= j). Suppose that in subpopu-
lation i there are Xi(t) A1 genes in generation t. There is no single
Markovian variable describing the behavior of the total population,

but the quantities Xi(t) are jointly Markovian, and to find N
(e)
e it

is necessary to find some function Y (t) = Y {X1(t), . . . , XH+1(t)}
obeying an equation parallel to (140). It is found, after some trial
and error, that a suitable function Y (t) is

Y (t) = [A−D + {(A−D)2 + 4BC}1/2]
∑

i

Xi(t){2N −Xi(t)}

+ 2B
∑

i6=j

∑
Xi(t){2N −Xj(t)}, (147)

where

A = (4N2 + H2K2 + K2H − 2N − 4NKH)/4N2,

B = (4KN −K2H −K2)/(4N2),

C = (4HKN −K2H2 −K2H)/(4N2),

D = (4N2 + HK2 + K2 − 4HK)/(4N2).
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With this definition of Y (t), the eigenvalue λ satisfying

E{Y (t + 1) | X1(t), . . . , XH+1(t)} = λY (t)

is
λ = 1

2

(
A + D + {(A−D)2 + 4BC}1/2

)
. (148)

If small-order terms are ignored, this yields eventually

N (e)
e ≈ N(H + 1){1 + (2K(H + 1))}−1} (149)

for large H and K. This equation is in fact accurate to within 10%
even for H = K = 1, and it thus reveals that population subdivision
leads to only a slight increase in the eigenvalue effective population
size compared to the value N(H +1) obtaining with no subdivision.

The inbreeding effective population size N
(i)
e can be found most

efficiently by noting that it is independent of K, since the act of
migration is irrelevant to the computation of its numerical value.
Thus immediately from (132)

N (i)
e =

{
N(H + 1)− 1

2

}
/{1− (2N)−1}, (150)

since each gene produces a number of offspring according to a bino-
mial distribution with index 2N and parameter (2N)−1. This value
clearly differs only trivially from the true population size N(H + 1)

and, for small H and K, it differs slightly from N
(e)
e .

Because of these two results, one may be tempted to ignore geo-
graphical sub-division in modelling evolutionary population genetic
processes.

The computation of N
(v)
e is beset with substantial difficulties

since there exists no scalar Markovian variable for the model. In-
deed, unless migration rates are of a large order of magnitude, there
is not even a “quasi-Markovian” variable. Because of this no satis-

factory value for N
(v)
e has yet been put forward for the geographical

structure case.
We consider finally a population whose size assumes cyclically

the sequence of values N1, N2, N3, . . . , Nk, N1, N2, . . . . There is no

unique value of N
(e)
e , N

(i)
e or N

(v)
e in this case, and it is convenient

to extend our previous definition to cover k consecutive generations
of the process. If the population size in generation t + k is Ni, it is
easy to see that if X(t) is the number of A1 genes in generation t,
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and in each generation reproduction occurs according to the model
(6),

E[X(t+k){2Ni−X(t+k)} | X(t)] = X(t){2Ni−X(t)}
k∏

i=1

{1−(2Ni)
−1}.

Defining now N
(e)
e by the equation

{1− (2N (e)
e )−1}k =

k∏
i=1

{1− (2Ni)
−1},

it is clear that if k is small and the Ni large,

N (e)
e ≈ k{N−1

1 + · · ·+ N−1
k }−1. (151)

Thus the eigenvalue effective population size is effectively the har-
monic mean of the various population sizes taken during the k-

generation cycle. A parallel formula holds for N
(i)
e , although here

it is easier to work through the probability Q(t + k) that two genes
in generation t + k do not have the same ancestor in generation t.
Clearly

Q(t + k) = {1− (2Ni−1)
−1}Q(t + k − 1),

and iteration over k generations gives

Q(t + k) =
k∏

i=1

{1− (2Ni)
−1}Q(t).

Elementary calculations now show that N
(i)
e is also essentially equal

to the harmonic mean of the various population sizes. Again, if x(t)
is the fraction of A1 genes in generation t,

var{x(t+k) | x(t)} = 1
2
k{N−1

1 +N−1
2 +· · ·+N−1

k }x(t){1−x(t)}+0(N−2
i ).

This shows that to a suitable approximation, N
(v)
e is also the har-

monic mean of the various population sizes.
We conclude this section by noting that many problems exist

with the concept of the effective population size. Perhaps the most
notable is the following. The expression “effective population size”
is widely used in areas associated with population genetics, espe-
cially in connection with the evolution of the human population,
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by authors who appear to have no idea of its intimate connection
to the Wright-Fisher model or of the fact that different concepts of
the effective population size exist. The numerical values given by
these different concepts can differ widely for a population whose size
increases with time, as with the human population, so that many
dubious claims about the “effective size” of the human population
at some given time in the past exist in the literature.

Molecular population genetics

Introduction

The infinitely many alleles model was inspired by the knowledge
of the gene as a sequence of nucleotides. There are four possible
nucleotides at each site in this sequence, a, g, c and t, and an “allele”
is simply one specific sequence, such as tccgagtgcat...tc. In a typical
gene, consisting of a sequence of 3000 nucleotides, there are 43000

possible sequences, that is 43000 possible alleles. For essentially all
practical purposes we may take this number as infinity, thus leading
to the infinitely many alleles model. Thus this model is one of
molecular population genetics, since it is inspired by knowledge of
the molecular nature of the gene.

Another model inspired by this knowledge is the “infinitely many
sites” model, described in detail in these lectures by Dr Griffiths.
However, some aspects of this model are discussed below.

There are three points where the mathematical population genet-
ics theory based on nucleotide frequencies differs from the classical
theory based on gene frequencies. First, the molecular theory is
dynamic, in contrast to the often static classical theory. Mutations
are usually seen as leading to new allelic types rather than back to
currently or previously existing types, since it is plausible that most
nucleotide mutations will lead to sequences not currently existing in
the population. Both the infinitely many alleles and the infinitely
many sites models were originally proposed with this view in mind.

Second, while the classical theory concerns the evolution of genes
given labels “A1”, “A2”, etc., at the molecular level the actual ge-
netic material is known, so that the symbols a, g, c, and t refer
to specific rather than type entities. The fact that the theory thus
concerns ultimate and real entities is of great importance. Perhaps
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the most important point derives from the fact that molecular con-
siderations often lead to retrospective rather than prospective evolu-
tionary questions. Classical population genetics theory was largely
prospective: Given reasonable numerical values for various genetic
parameters, the main aim was to show that evolution as a genetic
process could and would occur. A hundred years ago such an under-
taking was required. It is, however, no longer necessary to do this,
and it now appears more useful to attempt to describe the course
that evolution has taken by a retrospective analysis, and thus to
gain empirical insight into evolutionary questions. This change of
viewpoint has also led to the introduction of statistical methods
for analyzing current genetical data, discussed below. The current
emphasis on statistical inference procedures is perhaps the most im-
portant new direction in the theory in recent times. Knowledge of
the actual genetic material is essential for these inferences, and the
entire retrospective analysis must therefore be carried out in the
framework of molecular population genetics.

Finally, most of the retrospective theory is inferential, and for
reasons of practicality relies for the inferences made on the data
available from a sample of genes taken from the population of inter-
est, rather than from data from the entire population. We denote
throughout the number of genes in this sample by n. Almost all
results given below relate to such a sample.

We consider first the Wright–Fisher infinitely many alleles model.
The properties of a sample of n genes under this model are best
summarized through the (approximating) partition formula (93).
This leads to the distribution of the number Kn of different allelic
types observed in the sample as given in (94) and thus to the mean
of Kn as given by (95).

There is currently much interest in estimating the parameter θ.
Equations (93) and (94) show jointly that the conditional distribu-
tion of the vector A = (A1, A2, . . . , An) defined before (93), given
the value of Kn, is

Prob{A = a|Kn = k} =
n!

|Sk
n| 1a12a2 · · · nan a1!a2! · · · an!

, (152)

where a = (a1, a2, . . . , an). Equation (152) implies that Kn is a suf-
ficient statistic for θ. Standard statistical theory then shows that
once the observed value kn of Kn is given, no further information
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about θ is provided by the various aj values, so that all inferences
about θ should be carried out using the observed value kn of Kn only.
The main inferential procedure deriving from (152) is the testy of
hypothesis that the alleles in the sample are selectively equivalent.
The fact that, in practice, θ is unknown does not matter for such
inferences, since the conditional distribution (152) is independent of
θ, and forms the “null hypothesis” distribution of the allelic parti-
tion. Tests of the neutrality hypothesis are discussed in a separate
section below.

It is also possible to use (94) to estimate θ or more generally
any function of θ. Since Kn is a sufficient statistic for θ we can use
the probability distribution in (94) directly to find the maximum

likelihood estimator θ̂K of θ. It is found that this estimator is the
implicit solution of the equation

Kn =
θ̂K

θ̂K

+
θ̂K

θ̂K + 1
+

θ̂K

θ̂K + 2
+ · · ·+ θ̂K

θ̂K + n− 1
. (153)

Given the observed value kn of Kn, the corresponding maximum
likelihood estimate θ̂k of θ is found by solving the equation

kn =
θ̂k

θ̂k

+
θ̂k

θ̂k + 1
+

θ̂k

θ̂k + 2
+ · · ·+ θ̂k

θ̂k + n− 1
. (154)

Numerical calculation of the estimate θ̂k using (154) is usually nec-
essary.

The estimator implied by (153) is biased, and it is easy to show
that there can be no unbiased estimator of θ. On the other hand,
there exists an unbiased estimator of the population homozygosity
probability 1/(1 + θ). If this estimator is denoted by g(Kn), (94)
shows that

n∑

k=1

|Sk
n|θkg(k)

Sn(θ)
=

1

1 + θ
,

where |Sk
n| is the absolute value of a Stirling number, defined below

(94). From this,

n∑

k=1

|Sk
n|θkg(k) = θ(θ + 2)(θ + 3) · · · (θ + n− 1) .
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Since this is an identity for all θ, the expression for g(k) for any
observed value kn of Kn can be found by comparing the coefficients
of θk on both sides of this equation. In particular, when kn = 2,

g(2) =
1
2

+ 1
3

+ · · ·+ 1
n−1

1 + 1
2

+ 1
3

+ · · ·+ 1
n−1

. (155)

Unbiased estimation of 1/(1 + θ) for values of kn larger than 2 is
complicated, and it is then probably more convenient to use instead
the estimator (1+ θ̂K)−1, where θ̂K is found from (153), even though
this estimator is slightly biased.

Geneticists sometimes prefer to estimate (1 + θ)−1 by f , defined
in the notation of (98) by

f =
∑

i

n2
i

n2
. (156)

This is a poor estimate in that it uses precisely that part of the data
that is least informative about (1 + θ)−1. The estimate of θ derived
from f , namely

θ̂f = f−1 − 1, (157)

is biased and has mean square error approximately six or eight times
larger than that of θ̂.

An approximation for the mean square error (MSE) of the es-

timator θ̂K as defined by (153) is found as follows. Writing the

right-hand side of (153) as ψ(θ̂K), we have Kn = ψ(θ̂K) and also,
from (95), E(Kn) = ψ(θ). Thus by subtraction,

Kn − E(Kn) = ψ(θ̂K)− ψ(θ).

A first-order Taylor series approximation for the right-hand side is
(θ̂K − θ)ψ′(θ), so that

Kn − E(Kn) ≈ (θ̂K − θ)ψ′(θ).

Squaring and taking expectations, we get

MSE(θ̂K) ≈ var(Kn)

ψ′(θ)2
. (158)

The variance of Kn is given in (96), and it is immediate that

ψ′(θ) =
n−1∑
j=1

j

(θ + j)2
. (159)
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This leads to

MSE(θ̂K) ≈ θ∑n−1
j=1

j
(j+θ)2

. (160)

The approximation (160) appears to be quite accurate.
Exact sample results for the Moran model can be obtained rapidly,

since under the Moran infinitely many alleles model, (93) holds ex-
actly if θ is defined by (109). This is in contrast to the situation
for the Wright–Fisher model, where (93) is only an approximation.
Thus with the Moran model definition of θ, (94), (95), (96), (97),
and (98) are all exact, as is also the conditional distribution formula
(152) that derives from them. It is interesting to ask why these
formulas hold exactly in the Moran model, not only in a sample
but also in the population, and also why sample formulas and pop-
ulation formulae are identical, with the replacement of n for 2N.
Coalescent theory, which we now turn to, explains this fact.

The coalescent

Introduction

The concept that is most frequently used for inferential and other
purposes in population genetics is the Kingman coalescent (King-
man (1982)) . In this section a description of the most immediate
properties of the simple coalescent process is given. Complications
that in practice must be taken into account (for example changes
over time in the size of the population under consideration) are not
discussed. One of the main values of the coalescent is to provide a
coherent framework within which to view various properties of the
models considered above.

Two technical results

It is convenient to start with two technical results, one of which will
be relevant for approximations in the coalescent associated with the
Wright-Fisher model, and by implication the Cannings model, while
the other will be relevant for exact Moran model calculations.

We consider first a Poisson process in which events occur inde-
pendently and randomly in time, with the probability of an event in
(t, t + δt) being aδt. (Here and throughout we ignore terms of order
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(δt)2.) We call a the rate of the process. Standard Poisson process
theory shows that the density function of the (random) time X be-
tween events, and until the first event, is f(x) = a e−ax, and thus
that the mean time until the first event, and also between events, is
1/a.

Consider now two such processes, process (a) and process (b),
with respective rates a and b. From standard Poisson process theory,
given that an event occurs, the probability that it arises in process
(a) is a/(a + b). The mean number of “process (a)” events to occur
before the first “process (b)” event occurs is a/b. More generally,
the probability that j “process (a)” events occur before the first
“process (b)” event occurs is

b

a + b

( a

a + b

)j

, j = 0, 1, . . . . (161)

The mean time for the first event to occur under one or the other
process is 1/(a+ b). Given that this first event occurs in process (a),
the conditional mean time until this first event occurs is equal to
the unconditional mean time, namely 1/(a+b). The same conclusion
applies if the first event occurs in process (b).

Similar properties hold for the geometric distribution. Consider a
sequence of independent trials and two events, event A and event B.
The probability that one of the events A and B occurs at any trial
is a + b. The events A and B cannot both occur at the same trial,
and given that one of these events occurs at trial i, the probability
that it is an A event is a/(a + b).

Consider now the random number of trials until the first event
occurs. This random variable has geometric distribution, and takes
the value i, i = 1, 2, . . . , with probability (1− a− b)i−1(a + b). The
mean of this random variable is thus 1/(a+ b). The probability that
the first event to occur is an A event is a/(a + b). Given that the
first event to occur is an A event, the mean number of trials before
the event occurs is 1/(a + b). In other words, this mean number of
trials applies whichever event occurs first. The similarity of proper-
ties between the Poisson process and the geometric distribution is
evident.
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Approximate results for the Wright-Fisher model - no mu-
tation

With the above results in hand, we first describe the general concept
of the coalescent process. To do this, we consider the ancestry of a
sample of n genes taken at the present time. Since our interest is in
the ancestry of these genes, we consider a process moving backward
in time, and introduce a notation acknowledging this. We consis-
tently use the notation τ for a time in the past before the sample
was taken, so that if τ2 > τ1, then τ2 is further back in the past than
is τ1.

We describe the common ancestry of the sample of n genes at
any time τ through the concept of an equivalence class. Two genes
in the sample of n are in the same equivalence class at time τ if
they have a common ancestor at this time. Equivalence classes are
denoted by parentheses: Thus if n = 8 and at time τ genes 1 and 2
have one common ancestor, genes 4 and 5 a second, and genes 6 and
7 a third, and none of the three common ancestors are identical, the
equivalence classes at time time τ are

(1, 2), (3), (4, 5), (6, 7), (8). (162)

Such a time τ is shown in Figure 1.
We call any such set of equivalence classes an equivalence relation,

and denote any such equivalence relation by a Greek letter. As two
particular cases, at time τ = 0 the equivalence relation is φ1 =
{(1), (2), (3), (4), (5), (6), (7), (8)}, and at the time of the most recent
common ancestor of all eight genes, the equivalence relation is φn =
{(1, 2, 3, 4, 5, 6, 7, 8)}. The coalescent process is a description of the
details of the ancestry of the n genes moving from φ1 to φn.

Let ξ be some equivalence relation, and η some equivalence rela-
tions that can be found from ξ by amalgamating two of the equiv-
alence classes in ξ. Such an amalgamation is called a coalescence,
and the process of successive such amalgamations is called the co-
alescence process. It is assumed that, if terms of order (δτ)2 are
ignored, and given that the process is in ξ at time τ ,

Prob (process in η at time τ + δτ) = δτ, (163)

and if j is the number of equivalence classes in ξ,

Prob (process in ξ at time τ + δτ) = 1− j(j − 1)

2
δτ. (164)
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Figure 1: The coalescent

The above assumptions are clearly approximations for any discrete-
time process, but they are precisely the assumptions needed for the
Wright-Fisher approximate coalescent theory.

The coalescent process defined by (163) and (164)consists of a
sequence of n − 1 Poisson processes, with respective rates j(j −
1)/2, j = n, n − 1, . . . , 2, describing the Poisson process rate at
which two of these classes amalgamate when there are j equivalence
classes in the coalescent. Thus the rate j(j − 1)/2 applies when
there are j ancestors of the genes in the sample for j < n, with the
rate n(n− 1)/2 applying for the actual sample itself.

The Poisson process theory outlined above shows that the time
Tj to move from an ancestry consisting of j genes to one consisting of
j− 1 genes has an exponential distribution with mean 2/{j(j− 1)}.
Since the total time required to go back from the contemporary
sample of genes to their most recent common ancestor is the sum
of the times required to go from j to j − 1 ancestor genes, j =
2, 3, . . . , n, the mean E(TMRCAS) is, immediately,

E(TMRCAS) = 2
n∑

j=2

1

j(j − 1)
= 2

n−1∑
j=1

1

j(j + 1)
. (165)
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This time is 2 − 2/n coalescence time units, and it requires a mul-
tiplicative scaling factor of 2N to convert to a “generations” ba-
sis when applied to the Wright–Fisher model. In other words,
E(TMRCAS) = 4N − 4N/n generations.

It is clear from (165) that about half this mean time relates to
the final coalescence of two lines of ascent into one. This observation
gives some idea of the shape of the coalescent tree: The long arms
tend to arise when there is a very small number of genes in the
ancestry of the sample.

The times Tj, j = 1, 2, . . . , n − 1, are independent, so that the
variance of TMRCAS is the sum of the variances of the Tj. Standard
calculations show that this is approximately 4π2/3 − 12, or about
1.16, (squared) time units. This implies a standard deviation of
about 2.16 generations.

The complete distribution of TMRCAS is also known (Tavaré (2004)).
However the expression is complicated and we do not reproduce it
here, other than to note the inequalities

e−t ≤ Prob (TMRCAS > t) ≤ e−3t.

If the above theory were to apply to the entire population of
genes in a Wright–Fisher model, the mean E(TMRCAP) of the total
time to arrive at the most recent ancestor gene of all the genes in
the population (MRCAP) would be found by putting n = 2N , to
get

E(TMRCAP) = 4N − 2 (166)

generations. Although coalescent theory does not apply directly
to the entire population, the mean number of generations given in
(166) is essentially correct. The reason for this is implicit in an ob-
servation made above, that the long arms in any coalescent process
tend to arise when the number of genes in the ancestry of the genes
considered is small, and for such small numbers the assumptions for
the coalescent process hold.

Approximate results for the Wright-Fisher model with mu-
tation

We now introduce mutation, and suppose that the probability that
any gene mutates in the time interval (τ + δτ, τ) is (θ/2)δτ. All
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mutants are assumed to be of new allelic types. Following the coa-
lescent paradigm, we trace back the ancestry of a sample of n genes
to the mutation forming the oldest allele in the sample. As we go
backward in time along the coalescent, we shall encounter from time
to time a “defining event”, taken either as a coalescence of two lines
of ascent into a common ancestor or a mutation in one or other of
the lines of ascent. Figure 2 describes such an ancestry, identical to
that of Figure 1 but with crosses to indicate mutations.
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Figure 2: The coalescent with mutations

We exclude from further tracing back any line in which a muta-
tion occurs, since any mutation occurring further back in any such
line does not appear in the sample. Thus any such line may be
thought of as stopping at the mutation, as shown in Figure 3 (de-
scribing the same ancestry as that in Figure 2).

If at time τ there are j ancestors of the n genes in the sample,
the probability that a defining event occurs in (τ, τ + δτ) is

1

2
j(j − 1)δτ +

1

2
jθδτ =

1

2
j(j + θ − 1)δτ, (167)

the first term on the left-hand side arising from the possibility of a
coalescence of two lines of ascent, and the second from the possibility
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Figure 3: Tracing back to, and stopping at, mutational events

of a mutation.

If a defining event is a coalescence of two lines of ascent, the
number of lines of ascent clearly decreases by 1. The fact that
if a defining event arises from a mutation we exclude any further
tracing back of the line of ascent in which the mutation arose implies
that the number of lines of ascent also decreases by 1. Thus at
any defining event the number of lines of ascent considered in the
tracing back process decreases by 1. Given a defining event leading
to j genes in the ancestry, the Poisson process theory described
above shows that, going backward in time, the mean time until the
next defining event occurs is 2/{j(j + θ − 1)}, and that the same
mean time applies when we restrict attention to those defining events
determined by a mutation.

Thus starting with the original sample and continuing up the
ancestry until the mutation forming the oldest allele in the sample
is reached, we find that the mean age of the oldest allele in the
sample is

2
n∑

j=1

1

j(j + θ − 1)
(168)
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coalescent time units. The value in (168) must be multiplied by 2N
to give this mean age in terms of generations.

The time backward until the mutation forming the oldest allele in
the sample, whose mean is given in (168), does not necessarily trace
back to, and past, the most recent common ancestor of the genes
in the sample (MRCAS), and will do so only if the allelic type of
the MRCAS is represented in the sample. This observation can be
put in quantitative terms by comparing the MRCAS given in (165)
to the expression in (168). For small θ, the age of the oldest allele
will tend to exceed the time back to the MRCAS, while for large
θ, the converse will tend to be the case. The case θ = 2 appears
to be a borderline one: For this value, the expressions in (165) and
(168) differ only by a term of order n−2. Thus for this value of θ,
we expect the oldest allele in the sample to have arisen at about the
same time as the MRCAS.

The competing Poisson process theory outlined above shows that,
given that a defining event occurs with j genes present in the an-
cestry, the probability that this is a mutation is θ/(j − 1 + θ). Thus
the mean number of different allelic types found in the sample is

n∑
j=1

θ

j − 1 + θ
,

and this is the value given in (95). The number of “mutation-
caused” defining events with j genes present in the ancestry is, of
course, either 0 or 1, and thus the variance of the number of different
allelic types found in the sample is

n∑
j=1

(
θ

j − 1 + θ
− θ2

(j − 1 + θ)2

)
.

This expression is easily shown to be identical to the variance for-
mula (96).

Even more than this can be said. The probability that exactly k
of the defining events are “mutation-caused” is clearly proportional
to θk/{θ(θ + 1) · · · (θ + n − 1)}, the proportionality factor not de-
pending on θ. Since this is true for all possible values of θ and since
the sum of the probabilities over k = 1, 2, . . . , n must be 1, the prob-
ability distribution of the number of different alleles in the sample
must be given by (94).
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The complete distribution of the allelic configuration in the sam-
ple as given in (93) is not so simply derived. Kingman (1982), to
whom coalescent theory is due, employed the full machinery of the
coalescent process, together with a combinatorial argument consid-
ering all possible paths from φn to φ1, to derive (93). That is, (93)
derives immediately from, and is best thought of as a consequence of,
the coalescent properties of the ancestry of the genes in the sample.

The sample contains only one allele if no mutants occurred in the
coalescent after the original mutation for the oldest allele. Moving
up the coalescent, this is the probability that all defining events
before this original mutation is reached are amalgamations of lines
of ascent rather than mutations. The probability of this is

n−1∏
j=1

j

(j + θ)
=

(n− 1)!

(1 + θ)(2 + θ) · · · (n− 1 + θ)
, (169)

and this agrees, as it must, with the expression in (97).

Exact results for the Moran model - no mutation

We now turn to exact coalescent results for the Moran model. These
are found in a manner similar to that used above, with the time unit
used corresponding to the time between one birth and death event
and the next.

As we did for the Wright–Fisher model, we first consider the
coalescent process itself. Here, however, we use a coalescent theory
that is not only exact, but that also applies for a sample of any
size, and in particular to the entire population of genes itself. This
implies that all results deriving from coalescent theory, for example
the topology of the coalescent tree, are identical to corresponding
results for the exact Moran model coalescent process.

It is convenient to think of a gene that does not die in a birth and
death event as being its own descendant after that event has take
place. Consider, then, a sample of n genes, where n is not restricted
to be small and could be any number up to and including the entire
population size of 2N. As we trace back the ancestry of these n genes
we will encounter a sequence of coalescent events reducing the size of
the ancestry to n−1, n−2, . . . genes and eventually to one gene, the
most recent common ancestor of the sample. Suppose that in this
process we have just reached a time when there are exactly j genes
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in this ancestry. These will be “descendants” of j−1 parental genes
if one of these parents was chosen to reproduce and the offspring is in
the ancestry of the sample of n genes. The probability of this event
is j(j−1)/(2N)2. With probability 1−j(j−1)/(2N)2 the number of
ancestors remains at j. It follows that, as we trace back the ancestry
of the genes, the number Tj of birth and death events between the
times when there are j ancestor genes and j− 1 ancestor genes has,
exactly, a geometric distribution with parameter j(j−1)/(2N)2 and
thus with mean (2N)2/{j(j − 1)}. From this, the mean of the time
TMRCAS until the most recent common ancestor of all the genes in
the sample is given by

E(TMRCAS) =
n∑

j=2

(2N)2

j(j − 1)
= (2N)2

(
1− 1

n

)
(170)

birth and death events. In the particular case n = 2N this is

E(TMRCAP) = 2N(2N − 1) (171)

birth and death events.
Since the various Tj’s are independent, the variance of TMRCAP is

the sum of the variances of the Tj’s. This is

var(TMRCAS) =
n∑

j=2

(2N)4

j2(j − 1)2
−

n∑
j=2

(2N)2

j(j − 1)
. (172)

The complete distribution of TMRCAP can be found, but the resulting
expression is complicated and is not given here.

Exact results for the Moran model with mutation

We now introduce mutation. Consider again a sample of n genes and
the sequence of birth and death events that led to the formation of
this sample. We again trace back the ancestry of the n genes in the
sample, and consider some birth and death event when this ancestry
contains j−1 genes. With probability j/2N the newborn created in
the population at this birth and death event is in the ancestry of the
sample, and with probability u is a mutant. That is, the probability
that at this birth and death event a new mutant gene is added to the
ancestry of the sample is ju/(2N). As for the Wright–Fisher model,
we trace back upward along the lines of ascent from the sample, and
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do not trace back any further any line of ascent at a time when a
new mutant arises in that line, so that at any mutation, the number
of lines of ascent that we consider decreases by 1.

A further decrease can occur from a coalescence for which the
addition of a newborn to the ancestry of the sample does not produce
a mutant offspring gene. If at any time there are j lines in the
ancestry, the probability of a coalescence not arising from a mutant
newborn is j(j − 1)(1− u)/(2N)2.

It follows from the above that the number of lines of ascent from
the sample will decrease from j to j − 1 at some birth and death
event with total probability

ju

2N
+

j(j − 1)(1− u)

(2N)2
=

2Nju + j(j − 1)(1− u)

(2N)2
. (173)

We write the left-hand side as vj + wj, where vj and wj are defined
in (125). The number of birth and death events until a decrease in
the number of lines of ascent from j to j − 1 follows a geometric
distribution with parameter vj + wj. It follows from the competing
geometric theory given above that the mean number of birth and
death events until the number of lines of ascent decreases from j to
j− 1 is 1/(vj +wj), and that this mean applies whatever the reason
for the decrease. Tracing back to the mutation forming the oldest
allele in the sample, we see that the mean age of this oldest allele
is, exactly,

n∑
j=1

1

vj + wj

, (174)

where vj and wj are defined in (125).
The probability that a decrease in the number of ancestral lines

from j to j−1, given that such a decrease occurs, is vj/(vj +wj), or,
using the Moran model definition of θ, more simply as θ/(j−1+ θ).
The mean number of different alleles in the sample is thus, exactly,

n∑
j=1

θ

j − 1 + θ
, (175)

as given by (95). Extending this argument as for the Wright–Fisher
case, the exact distribution of the number of alleles in the sample is
found to be given by (94), as expected.
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The complete distribution of the sample allelic configuration, as
with the Wright–Fisher model, requires a full description of the co-
alescent process.

The argument just used, while expressed as one concerning a
sample of genes, applies equally for the entire population of genes.
This occurs because, even in the entire population, at most one coa-
lescent event can occur at each birth and death event. Thus all the
exact sample Moran model results found by coalescent arguments
apply for the population as a whole, with n being replaced by 2N.
This explains the identity of the form of many exact Moran model
sample and population formulas.

“Age” and “frequency” results

Many elegant results are found when considering the ages of alleles
and the frequencies of alleles when ordered by their ages. In this
section we consider both “frequency” and “age” results, starting
with the former.

Approximate Wright-Fisher model “frequency” results

We consider first approximate results applying for the Wright-Fisher
model. These follow largely from the so-called GEM distribution,
named for Griffiths, (1980), Engen (1975) and McCloskey (1965),
who established its salient properties. This distribution can be found
in the following way.

Suppose that a gene is taken at random from the population. The
probability that this gene will be of an allelic type whose frequency
in the population is x is just x. The frequency spectrum shows im-
mediately that the (random) frequency of the allele determined by
this randomly chosen gene is

f(x) = θ(1− x)θ−1. (176)

Suppose now that all genes of the allelic type just chosen are re-
moved from the population. A second gene is now drawn at random
from the population and its allelic type observed. The (relative)
frequency of the allelic type of this gene among the genes remaining
at this stage is also given by (176). All genes of this second allelic
type are now also removed from the population. A third gene is
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then drawn at random from the genes remaining, its allelic type ob-
served, and all genes of this (third) allelic type removed from the
population. This process is continued indefinitely. At any stage, the
distribution of the (relative) frequency of the allelic type of any gene
just drawn among the genes left when the draw takes place is given
by (176). This leads to the following representation. Denote by
wj the original population frequency of the jth allelic type drawn.
Then we can write w1 = x1, and for j = 2, 3, . . .,

wj = (1− x1)(1− x2) · · · (1− xj−1)xj. (177)

where the xj are independent random variables, each having the
distribution (176). The random vector (w1, w2, . . .) is then defined
as having the GEM distribution.

All the alleles in the population at any time eventually leave the
population, through the joint processes of mutation and random
drift, and any allele with current population frequency x survives
the longest with probability x. That is, the GEM arises when alleles
are labelled according to the length of their future persistence in
the population. Reversibility arguments then show that the GEM
distribution also applies when the alleles in the population are la-
belled by their age. In other words, the vector (w1, w2, . . .) can be
thought of as the vector of allelic frequencies when alleles are ordered
with respect to their ages in the population (with allele 1 being the
oldest).

The elegance of many age-ordered formulas derives directly from
the simplicity and tractability of the GEM distribution. Here are
two examples. First, the GEM distribution shows immediately that
the mean population frequency of the oldest allele in the population
is

θ

∫ 1

0

x(1− x)θ−1dx =
1

1 + θ
, (178)

and more generally that the mean population frequency of the jth
oldest allele in the population is

1

1 + θ

( θ

1 + θ

)j−1

.

Second, the probability that a gene drawn at random from the
population is of the type of the oldest allele is the mean frequency
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of the oldest allele, namely 1/(1+θ), as just shown. More generally,
the probability that n genes drawn at random from the population
are all of the type of the oldest allele is

θ

∫ 1

0

xn(1− x)θ−1 dx =
n!

(1 + θ)(2 + θ) · · · (n + θ)
.

The probability that n genes drawn at random from the popula-
tion are all of the same unspecified allelic type is

θ

∫ 1

0

xn−1(1− x)θ−1 dx =
(n− 1)!

(1 + θ)(2 + θ) · · · (n + θ − 1)
,

in agreement with (97). From this, given that n genes drawn at
random are all of the same allelic type, the probability that they
are all of the allelic type of the oldest allele is n/(n + θ).

A question of some interest is to find the probability that the old-
est allele in the population is also the most frequent. By reversibility
arguments this is also the probability that the most frequent allele
in the population will survive the longest into the future, and in
turn this is the mean of the frequency of the most frequent allele.
Unfortunately, the distribution of the frequency of the most frequent
allele is not user-friendly. A lower bound for the mean frequency of
the most frequent allele is (1/2)θ, which is useful for small θ but not
of much value for larger θ, and an upper bound is 1− θ(1− θ) log 2.
When θ = 1 this mean is 0.624..., which may be compared with the
mean frequency of the oldest allele (which must be less than the
mean frequency of the most frequent allele) of 0.5.

Exact Moran model “frequency” results

It will be expected that exact results, corresponding to those given
above for the Wright-Fisher model, hold for the Moran model, with
θ defined, as always for this model, as 2Nu/(1 − u). The first of
these is an exact representation of the GEM distribution, analogous
to (177). This has been provided by Hoppe (1987). Denote by
N1, N2, . . . the numbers of genes of the oldest, second-oldest, . . .
alleles in the population. Then N1, N2, . . . can be defined in turn by

Ni = 1 + Mi, i = 1, 2, . . . , (179)

where Mi has a binomial distribution with index 2N − N1 − N2 −
· · ·−Ni−1− 1 and parameter xi, where x1, x2, . . . are iid continuous
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random variables each having the density function (176). Eventually
the sum N1 + N2 + · · · + Nk reaches the value 2N and the process
then stops, the final index k being identical to the number K2N of
alleles in the population.

It follows directly from this representation that the mean of N1

is

1 + (2N − 1)θ

∫ 1

0

x(1− x)θ−1 dx =
2N + θ

1 + θ
.

The mean of the proportion N1/(2N) is 1/{1 + (2N − 1)u}, which
is very close to the approximation 1/{1 + θ}.

If there is only one allele in the population, this allele must be
the oldest one in the population. The above representation shows
that the probability that the oldest allele arises 2N times in the
population is

Prob (M1 = 2N − 1) = θ

∫ 1

0

x2N−1(1− x)θ−1 dx.

This probability also follows immediately from the fact that an allele
arising 2N times in the population must be the oldest allele, and is
given more simply (see (110)) as

(2N − 1)!

(1 + θ)(2 + θ) · · · (2N − 1 + θ)
. (180)

More generally, Kelly (1977) has shown that the probability that
the oldest allele is represented by j genes in the population is

θ

2N

(
2N

j

)(
2N + θ − 1

j

)−1

, (181)

or more simply,

θ(2N − 1)(2N − 2) · · · (2N − j + 1)

(2N + θ − j)(2N + θ − j + 1) · · · (2N + θ − 1)
. (182)

The case j = 2N given in (180) is clearly a particular example of
this, and the mean number (2N + θ)/(1 + θ) follows from (182).

Approximate Wright-Fisher model “age” results

We now turn to “age” questions, considering first approximate Wright-
Fisher results.. Some for these follow immediately from the previous
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calculations. For example, the mean time for all the alleles existing
in the population at any time to leave the population is given in (44),
and by reversibility this is the mean time, into the past, that the
oldest of these originally arose by mutation. This is then the mean
age of the oldest allele in the population, given on a “generations”
basis. In other words,

mean age of oldest allele =
2N∑
j=1

4N

j(j + θ − 1)
generations. (183)

In the case θ = 2, this mean age is very close to 4N − 2, that is, to
the conditional mean fixation time (45).

If an allele is observed in the population with frequency p, what
is its mean age? By reversibility, this is the mean time t̄(p) that it
persists in the population, and in the Wright–Fisher model approx-
imation for this is found immediately from (40) as

∞∑
j=1

4N

j(j + θ − 1)

(
1− (1− p)j

)
. (184)

This is clearly a generalization of the expression in (183), since if
p = 1, only one allele arises in the population, and it must then be
the oldest allele.

A question whose answer follows from the above calculation is the
following: If a gene is taken at random from the population, what
is the diffusion approximation for the mean age of its allelic type?
With a change of notation, the density function of the frequency
p of the allelic type of the randomly chosen gene is, from (176),
f(p) = θ(1− p)θ−1. The mean age t̄(p) of an allele with frequency p
is, by reversibility, given by (40). The required probability is

θ

∫ 1

0

t̄(p)(1− p)θ−1 dp, (185)

and use of (40) for t̄(p) shows that this reduces to 2/θ time units, or
for the Wright–Fisher model, 1/u generations. This conclusion may
also be derived by looking backward to the past and using coalescent
arguments. It is also an immediate result. Looking backward to
the past, the probability that the original mutation creating the
allelic type of the gene in question occurred j generations in the
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past is u(1− u)j−1, j = 1, 2, . . . , and the mean of this (geometric)
distribution is 1/u.

We turn now to sample properties, which are in practice more
important than population properties. The most important sam-
ple distribution concerns the frequencies of the alleles in the sample
when ordered by age. This distribution was obtained d by Don-
nelly and Tavaré (1986), who found the probability that the num-
ber Kn of alleles in the sample takes the value k, and that the
age-ordered numbers of these alleles in the sample are (in age order)
n(1), n(2), . . . , n(k). This probability is

θk(n− 1)!

Sn(θ)n(k)(n(k) + n(k−1)) · · · (n(k) + n(k−1) + · · ·+ n(2))
, (186)

where Sj(θ) is defined below (93).
Griffiths and Tavaré (1998) give the Laplace transform of the

distribution of the age of an allele observed b times in a sample of
n genes, together with a limiting Laplace transform for the case
in which θ approaches 0. These results show that the diffusion
approximation for the mean age of such an allele is

∞∑
j=1

4N

j(j − 1 + θ)

(
1− (n− b + θ)(j)

(n + θ)(j)

)
(187)

generations, where a(j) is defined as a(j) = a(a + 1) · · · (a + j − 1).
This is the sample analogue of the population expression in (184),
and it converges to (184) as n →∞ with b = np.

Our final calculation concerns the mean age of the oldest allele
in the sample. For the Wright–Fisher model this mean age is

4N
n∑

j=1

1

j(j + θ − 1)
. (188)

For the case n = 2N this is the value given in (44), and for the case
n = 1 it reduces to the value 1/u given above.

Exact Moran model age results

We now turn to exact Moran model “age” results. The exact re-
sult corresponding to (183) for the Moran model is given in (122),
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or equivalently in (123), being almost exactly 4N2 birth and death
events. The exact Moran model calculation corresponding to (184)
follows from the mean persistence time found eventually using stan-
dard continuant Markov chain theory and (71). The Moran model
calculations parallel to those leading from (185) use the exact fre-
quency spectrum (113) and the exact mean age deriving from (71).
However, a direct argument parallel to that given for the Wright–
Fisher model shows that the exact mean time, measured in birth
and death events, is 2N/u.

The expression (186) is exact for the Moran model with θ de-
fined as 2Nu/(1− u). Several results concerning the oldest allele in
the sample can be found from this formula, or in some cases more
directly by other methods. For example, the probability that the
oldest allele in the sample is represented by j genes in the sample is
(Kelly, (1976))

θ

n

(
n

j

)(
n + θ − 1

j

)−1

. (189)

This is identical to the expression (181) if 2N is replaced by n in
the latter.

Further exact Moran model results provide connections between
the oldest allele in the sample and the oldest allele in the population.
For example, Kelly (1976) showed that in the Moran model, the
probability that the oldest allele in the population is observed at all
in the sample is n(2N + θ)/[2N(n + θ)]. This is equal to 1, as it
must be, when n = 2N, and when n = 1 it reduces to a result found
above that a randomly selected gene is of the oldest allelic type in
the population. (The Wright-Fisher model approximation to this
probability, found by letting N →∞, is n/(n + θ).)

A further result is that the probability that a gene seen j times
in the sample is of the oldest allelic type in the population is j(2N +
θ)/[2N(n+θ)]. (Letting N →∞, the Wright-Fisher model approxi-
mation for this probability is j/(n+θ). When n = j this is j/(j+θ),
a result found above found by other methods.)

Donnelly (1986)) provides further formulas extending these. He
showed, for example, that the probability that the oldest allele in
the population is observed j times in the sample is

θ

n + θ

(
n

j

)(
n + θ − 1

j

)−1

, j = 0, 1, 2, . . . , n. (190)
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This is, of course, closely connected to the Kelly result (189). For
the case j = 0 this probability is θ/(n + θ), confirming the com-
plementary probability n/(n + θ) found above. Conditional on the
event that the oldest allele in the population does appear in the
sample, a straightforward calculation using (190) shows that this
conditional probability and that in (189) are identical.

The result corresponding to (188) for the Moran model is

2N(2N + θ)
n∑

j=1

1

j(j + θ − 1)
(191)

birth and death events, with (of course) θ defined as 2Nu/(1 − u).
When n = 1 this reduces to the calculation 2N/u found above.
When n = 2N it is identical to (123) and, less obviously, to the
expression given in (122).

As noted in the discussion following (123), the expression in (191)
may be written equivalently as

n∑
j=1

1

vj + wj

, (192)

where vj and wj are defined in (125). Coalescent arguments explain
why the mean age of the oldest allele in a sample can be expressed in
this form and why the mean age of the oldest allele in the population
can similarly be expressed in the form defined by (124) and (125).

Testing neutrality

Introduction

Almost all the theory discussed so far, and in particular all of the
coalescent theory described, assumes selective neutrality at the gene
locus considered. In this section we consider the question: May we
in fact reasonably assume selective neutrality at this gene locus?

The hypothesis of selective neutrality is more frequently called
the “non-Darwinian” theory, and was promoted mainly by Kimura
(1968). Under this theory it is claimed that, whereas the gene sub-
stitutions responsible for obviously adaptive and progressive phe-
nomena are clearly selective, there exists a further class of gene
substitutions, perhaps in number far exceeding those directed by
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selection, that have occurred purely by chance stochastic processes.
A better name for the theory would thus be the “extra-Darwinian”
theory, although here we adhere to the standard expression given
above.

In a broader sense, the theory asserts that a large fraction of
currently observed genetic variation between and within populations
is nonselective. In this more extreme sense the theory has been
described as the “neutral alleles” theory, although this term and
the term “non-Darwinian” have been used interchangeably in the
literature and will be so used here.

This theory has, of course, been controversial, not only among
theoreticians but also among practical geneticists, and the question
whether certain specific substitutions have been neutral has been
argued for decades. We do not refer here to the extensive literature
on this matter.

In statistical terms the neutral theory is the “null hypothesis”
to be tested, and all calculations given here assume that this null
hypothesis is true. Most tests in the current literature relate to
“infinitely many sites” data: here we consider both these tests and
those tests that use “infinitely many alleles” data.

Tests based on the infinitely many alleles model

The first objective tests of selective neutrality based on the infinitely
many alleles model were put forward by Ewens (1972) and Watter-
son (1977). The broad aim of both tests was to assess whether the
observed values {a1, . . . , an} in (152) conform reasonably to what is
expected under neutrality, that is, under the formula (152), given
the sample size n and the observed number k of alleles in the sample.
It is equivalent to use the observed numbers {n1, . . . , nk} defined in
connection with (98) and to assess whether these conform reason-
ably to their conditional probability given n and k, namely,

Prob(n1, n2, . . . , nk|k) =
n!

|Sk
n|k!n1n2 · · ·nk

. (193)

The Ewens and the Watterson testing procedures differ only in
the test statistic employed, and here we discuss only the (superior)
Watterson procedure. This uses as test statistic the observed sample
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homozygosity, defined as

f =
k∑

j=1

n2
j

n2
. (194)

The first aim is to establish what values of f will lead to rejection
of the neutral hypothesis. Clearly, f will tend to be smaller under
selection favoring heterozygotes than under neutrality, since this
form of selection will tend to equalize allele frequencies compared
to that expected for the neutral case, thus tending to decrease f .
If we expect one high-frequency “superior” allele and a collection of
low-frequency deleterious alleles, f will tend to exceed its neutral
theory value. Thus the hypothesis of neutrality is rejected if f is
“too small” and also if f is “too large”.

To determine how large or small f must be before neutrality is
rejected, it is necessary to find its neutral theory probability dis-
tribution. This may be found in principle from (193). In practice,
difficulties arise with the mathematical calculations because of the
form of the distribution (193), and other procedures are needed.

For any observed data set {n1, . . . , nk}, a computer-intensive ex-
act approach proceeds by taking n and k as given, and summing
the probabilities in (193) over all those n1, n2, . . . , nk combinations
that lead to a value of f more extreme than that determined by the
data. This procedure is increasingly practicable with present-day
computers, but will still be difficult in practice if an extremely large
number of sample points is involved.

An approximate approach is to use a computer simulation to
draw a large number of random samples from the distribution in
(193): Efficient ways of doing this are given by Watterson (1978).
If a sufficiently large number of such samples is drawn, a reliable
empirical estimate can be made of various significance level points.
This was done by Watterson (1978): see his Table 1.

The simulation method allows calculation of tables of E(f |k) and
var(f |k) for various k and n values, which are of independent interest
and are given (for the data of Table 1) in Table 2.

We illustrate this test of neutrality by applying it to particular
data. The data concern numbers and frequencies of different alleles
at the Esterase-2 locus in various Drosophila species and are quoted
by Ewens (1974) and Watterson (1977).
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Species n k n1 n2 n3 n4 n5 n6 n7

willistoni 582 7 559 11 7 2 1 1 1
tropicalis 298 7 234 52 4 4 2 1 1
equinoxalis 376 5 361 5 4 3 3
simulans 308 7 91 76 70 57 12 1 1

Table 1: Drosophila sample data

Species f E(f) var(f) P Psim

willistoni 0.9230 0.4777 0.0295 0.007 0.009
tropicalis 0.6475 0.4434 0.0253 0.130 0.134
equinoxalis 0.9222 0.5654 0.0343 0.036 0.044
simulans 0.2356 0.4452 0.0255 0.044

Table 2: Sample statistics, means, variances, and probabilities for the data of
Table 11.1.

For each set of data we compute f , the observed homozygosity.
Then the exact neutral theory probability P (given in Table 2) that
the homozygosity is more extreme than its observed value may be
calculated (except for the D. simulans case where the computations
are prohibitive). The simulated probabilities Psim are also given in
Table 2; these are in reasonable agreement with the exact values.
The conclusion that we draw is that significant evidence of selection
appears to exist in all species except D. tropicalis.

We next outline two procedures based on the sample “frequency
spectrum”. Define Ai as the (random) number of alleles in the
sample that are represented by exactly i genes. For given k and n,
the mean value of Ai can be found directly from (152) as

E
(
Ai|k, n

)
=

n!

i(n− i)!

|Sn−i
k−1|
|Sn

k |
. (195)

In this formula the Si
j are values of Stirling numbers of the first

kind as discussed after (94). The array of the E(Ai|k, n) values for
i = 1, 2, . . . , n is the sample conditional mean frequency spectrum,
and the corresponding array of observed values ai is the observed
conditional frequency spectrum. The first approach that we outline
is an informal one, consisting of a simple visual comparison of the
observed and the expected sample frequency spectra. Coyne (1976)
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provides an illustration of this approach. In Coyne’s data, n = 21,
k = 10, and

n1 = n2 = · · · = n9 = 1, n10 = 12.

Direct use of (71) shows that given that k = 10 and n = 21,

E
(
Ai | k = 10, n = 21

)
=

21!

i(21− i)!

|S21−i
9 |
|S21

10 |
, (196)

and this may be evaluated for i = 1, 2, . . . , 12, the only possible
values in this case. A comparison of the observed ai values and
the expected values calculated from (196) is given in Table 3. It
appears very difficult to maintain the neutral theory in the light of
this comparison.

i
ai 1 2 3 4 5 6 7 8 9 10 11 12
E 5.2 2.1 1.1 0.7 0.4 0.2 0.1 0.1 0.0 0.0 0.0 0.0
O 9 0 0 0 0 0 0 0 0 0.0 0.0 1

Table 3: Comparison of expected (E) and observed (O) sample frequency spec-
tra.

A second approach provides a formal test of hypothesis, but fo-
cuses only on the number A1 of singleton alleles in the sample. This
procedure originally assumed selective neutrality and was used to
test for a recent increase in the mutation rate. However, it may
equally well be used as a test of neutrality itself if a constant muta-
tion rate is assumed, especially for any test in which the alternative
selective hypothesis of interest would lead to a large number of sin-
gleton alleles. The procedure may be generalized by using as test
statistic the total number of singleton, doubleton, . . ., j-ton alleles,
leading to a test in which the selective alternative implies a signifi-
cantly large number of low-frequency alleles. A parallel procedure,
using the frequency of the most frequent allele in the data, may also
be used.

We describe here only the test based on the number A1 of single-
ton alleles. The total number k of alleles in the sample is taken as
given, and the test is based on the neutral theory conditional distri-
bution of A1, given k and n. (It is assumed, as is always the case in
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practice, that n strictly exceeds k.) This conditional distribution is
independent of θ and is found from (152) to be

Prob(A1 = a|k, n) =
k−1∑
j=a

(−1)j−a |Sn
k−1|

a!(j − a)!|Sn
k |

. (197)

Here Sj
i is again a Stirling number. The conditional mean of A1

is |Sn
k−1|/|Sn

k |, and the distribution (197) is approximately Poisson,
with this mean. This observation enables a rapid approximate as-
sessment of whether the number of singleton alleles is a significantly
large one, assuming selective neutrality.

Tests based on the infinitely many sites model

Introduction

Dr Griffiths has discussed the infinitely many sites model in detail,
and here we use results for that model which relate to testing the
neutrality hypothesis. Since the complete nucleotide (i.e. DNA) se-
quences of genes are now available in large numbers, and since these
data represent an ultimate state of knowledge of the gene, tests of
neutrality based on infinitely many sites data are increasingly pop-
ular. Although several tests have been proposed that use infinitely
many sites data, here we focus on what is by far the most popular
of these, namely the Tajima (1989) test. The theory for this test is
based on the Watterson (1975) infinitely many sites theory, which
assumes complete linkage (that is, no recombination) between sites.
It is therefore assumed throughout that the data at hand conform
to this assumption. In practice this might mean that the DNA se-
quences in the data relate to a single gene.

As for tests using infinitely many alleles theory, discussed above,
it is assumed in all the calculations in this section that selective
neutrality holds, so that these can be thought of as “null hypothesis”
calculations.

We assume a sample of n aligned sequences. The number S
of sites segregating in the sample is not a sufficient statistic for
the central parameter θ describing the stochastic behavior of the
evolution of these sequences. Indeed, there is no simple nontrivial
sufficient statistic for θ for this case. This implies that no direct
analogue of the exact infinitely many alleles tests is possible.
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On the other hand, in the infinitely many sites model there are
several unbiased estimators of θ when neutrality holds. The ba-
sic idea of the Tajima test is to form a statistic whose numerator
is the difference between two such unbiased estimators and whose
denominator is an estimate of the standard deviation of this differ-
ence. Although under neutrality these two observed values of these
estimators should tend to be close, since they are both unbiased es-
timators of the same quantity, under selection they should tend to
differ, since the estimators on which they are based tend to differ
under selection, and in predictable ways. Thus values of the statistic
formed sufficiently far from zero lead to rejection of the neutrality
hypothesis. To find the sampling properties of these statistics it is
necessary first to discuss properties of the various unbiased estima-
tors of θ used in them. The theory described below relates to the
Wright-Fisher model testing procedure. A parallel theory applies
for other models.

Estimators of θ

In this section we consider properties of two statistics that in the
neutral case are both unbiased estimators of the parameter θ. As
discussed above, the theory considered in this section concerns only
the case of completely linked segregating sites.

The first unbiased estimator of θ that we consider is that based
on the number Sn of segregating sites. Standard theory (discussed
by Dr Griffiths) shows that the mean of Sn is given by

θ

n−1∑
j=1

1/j = g1θ,

where

g1 =
n−1∑
j=1

1

j
. (198)

We note for future reference that the variance of Sn is

var(Sn) = g1θ + g2θ
2, (199)

where

g2 =
n−1∑
j=1

1

j2
. (200)
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Clearly an unbiased estimator of θ is

θ̂S =
Sn

g1

. (201)

Equation (199) implies that the variance of θ̂S is

var(θ̂S) =
θ

g1

+
g2θ

2

g2
1

. (202)

The second unbiased estimator of θ is found as follows. Suppose
that the nucleotide sequences i and j in the sample are compared
and differ at some random number T (i, j) of sites. Then T (i, j) is
an unbiased estimator of θ. It is natural to consider all

(
n
2

)
possible

comparisons of two nucleotide sequences in the sample and to form
the statistic

T =

∑
i<j T (i, j)(

n
2

) . (203)

Since this is also an unbiased estimator of θ, we think of it as forming
the unbiased estimator θ̂T , defined by

θ̂T =

∑
i<j T (i, j)(

n
2

) . (204)

This estimator of θ was proposed by Tajima (1983). It is a poor
estimator of θ in that its variance, namely,

n + 1

3(n− 1)
θ +

2(n2 + n + 3)

9n(n− 1)
θ2 = b1θ + b2θ

2, (205)

does not approach 0 as the sample size n increases. (b1 and b2 are
implicitly defined in this equation.) However, our interest here in
this estimator is that it forms part of a hypothesis testing procedure,
and not as a possible estimator of θ.

The Tajima Test

The Tajima test in effect compares the values of θ̂T and θ̂S, defined
above. Specifically, the procedure is carried out in terms of the
statistic D, defined by

D =
θ̂T − θ̂S√

V̂
, (206)
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where V̂ is an unbiased estimate of the variance of θ̂T − θ̂S and is
defined in (208) below. Tajima showed, by using adroit coalescent

arguments, that the variance V of θ̂T − θ̂S is

V = c1θ + c2θ
2, (207)

where

c1 = b1 − 1

g1

, c2 = b2 − n + 2

a1n
+

g2

g2
1

.

Since this variance depends on θ, any estimate of this variance de-
pends on a choice of an estimate of θ.

The variance of the estimator θ̂S decreases to 0 as the sample size
increases (although the decrease is very slow), so the Tajima proce-

dure is to estimate the variance of θ̂T − θ̂S by the function of S that
provides an unbiased estimator of the variance (207). Elementary
statistical theory shows that this function is

V̂ =
c1S

g1

+
c2S(S − 1)

g2
1 + g2

. (208)

This is then used in the D statistic given in (206) above.
The next task is to find the null hypothesis distribution of D.

Although D is broadly similar in form to a z-score, it does not have
a normal distribution and its mean is not zero, nor is its variance
1, since the denominator of D involves a variance estimate rather
than a known variance. Further, the distribution of D depends on
the value of θ, which is in practice unknown. Thus there is no null
hypothesis distribution of D invariant over all θ values.

The Tajima procedure approximates the null hypothesis distri-
bution of D in the following way. First, the smallest value that D
can take arises when there is a singleton nucleotide at each site seg-
regating. In this case θ̂T is 2S/n, and the numerator in D is then
{(2/n)− (1/g1)}S. In this case the value of D approaches a, defined
by

a =
{(2/n)− (1/g1)}

√
g2
1 + g2√

c2

, (209)

as the value of S approaches infinity.
The largest value that D can take arises when there are n/2

nucleotides of one type and n/2 nucleotides of another type at each
site (for n even) or when there are (n− 1)/2 nucleotides of one type
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and (n + 1)/2 nucleotides of another type at each site (for n odd).
In this case the value of D approaches b, defined by

b =
{(n/2(n− 1))− (1/a1)}

√
g2
1 + g2√

c2

(210)

when n is even and the value of S approaches infinity. A similar
formula applies when n is odd.

Second, it is assumed, as an approximation, that the mean of D
is 0 and the variance of D is 1. Finally, it is also assumed that the
density function of D is the generalized beta distribution over the
range (a, b), defined by

f(D) =
Γ(α + β)(b−D)α−1(D − a)β−1

Γ(α)Γ(β)(b− a)α+β−1
, (211)

with the parameters α and β chosen so that the mean of D is indeed
0 and the variance of D is indeed 1. This leads to the choice

α = −(1 + ab)b

b− a
, β =

(1 + ab)a

b− a
.

This approximate null hypothesis distribution is then used to assess
whether any observed value of D is significant.

The various approximations listed above have been examined in
detail in the literature. It appears that the Tajima procedure is
often fairly accurate, although examples can be found where this is
not so. We do not pursue these matters here.
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Griffiths, R.C., Tavaré, S.: The ages of mutations in gene trees. Ann. Appl. Probab.
9, 567–590, (1999).
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