NOTES ON TALAGRAND’S ISOPERIMETRIC INEQUALITY

NICK COOK

ABSTRACT. These are notes on a well-known concentration of measure inequal-
ity of Talagrand, prepared for the participating analysis seminar at UCLA in
the Fall quarter of 2011, and slightly revised for the concentration of measure
reading group (organized by Marek Biskup and Oren Louidor) in Spring 2012.
The material here is based largely on the excellent treatments in the books
[Led01], [ASO8], [Ste97] and [Taol2], as well as the papers [Tal96], [KV02].
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1. TWO OF TALAGRAND’S INEQUALITIES

The aim of these notes is to prove the following theorem and corollary, which
first appeared in [Tal95] (see also [Tal96]), and to present a selection of applica-
tions. The bound (2) can be regarded as a sort of isoperimetric inequality, while
(3) has the form of what is commonly referred to in probability theory as a “con-
centration inequality”. All three of (1), (2) and (3) are commonly referred to as
“Talagrand’s inequality” in the literature; somewhat confusingly, Talagrand has
a few other well-known inequalities, unrelated to these, that are also commonly
called “Talagrand’s inequality”!

Date: May 7, 2012, minor corrections June 22, 2017.
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Theorem 1. Let (1, F1, 1), -y (D, Fn, tin) be probability spaces and consider
the probability space Q = Q0 X -+ X Q, equipped with the product sigma algebra
and probability measure P = 1 ® + -+ ® pin. For all nonempty measurable subsets

ACQ,
/ elcw NP (z) < 1/P(A) (1)
Q

where do(xz, A) is the convex distance (defined in Section 2.1) from x to A. As
a consequence, by Chebyshev’s inequality we have

P(AS) < P(lA)/ (2)

where Ay = {z € Q : dc(x, A) < t}.

Corollary 2. Let X = (X1,...,X,) be a random variable with independent com-
ponents taking values in [0,1]. Let F : R™ — R be a convex 1-Lipschitz function.
Let MF(X) be a median for F(X). Then for allt >0

P(IF(X) - MF(X)| > t) < 4e™*/4 (3)

We first present a nice immediate application of the corollary.

Let M be an n x n Hermitian matrix. Then the largest eigenvalue A\;(M) =
| M||op- Considering the operator norm of M as a function of the n? components
of the entries (the n real diagonal entries and the n(n — 1) real and imaginary
parts of the entries above the diagonal), we see that it is a convex and 1-Lipschitz
function from R™ with Euclidean distance to R. Indeed, convexity follows
from the triangle inequality for the operator norm, and 1-Lipschitz follows from
| M|lop < ||M]|2 (where the Frobenius norm on n x n matrices is the Euclidean

norm on R™).

Hence, if X is a random Hermitian matrix, where the diagonal entries and
the real and imaginary parts of the strict upper-triangle entries are independent
bounded scalar random variables, and we identify the space of Hermitian matrices
with R, then by Talagrand’s inequality we have that the random variable A\ (X)
is concentrated around its mean with sub-Gaussian tails independent of n. This
is especially interesting as it turns out that A (X) is of order y/n.

2. TALAGRAND’S PROOF

2.1. The convex distance. First we must define the convex distance, which is
a primitive notion of distance between a point and a set that is somewhat opaque
at first. It does not, in fact, come from a metric in the usual way.

Let  as in the theorem, and let A C Q, z € Q. We define Ux(z) C {0,1}"

Ua(z) = {s € {0,1}" : Jy € A with y; = x; whenever s; = 0}. (4)

If Q is such that we are allowed to subtract elements, we can slightly more in-
tuitively say that a vector s = (si,...,s,) in the binary cube supports a vector
z € Qif z; # 0 only when s; = 1, and define Us(x) to be the set of vectors in
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the binary cube that support some element of A — z. (Indeed when we prove the
corollary we will have Q = [0, 1]", so we will have vector space structure.) One
can internalize the elements s € Ua(z) as (rather coarse) travel plans: if a 0 — 1
vector s is in Uy (z), it means that starting at x, to get to A it is sufficient to vary
only the coordinates ¢ for which s; is 1.

Now let V4(x) C R™ be the convex hull in of Ug(z). We define deo(z, A) =
dr(0,Va(x)).

2.2. Proof of Corollary 2. The corollary uses the notation of probability, while
the theorem uses the integral symbol. We’ll use the former here.

We first recall that a median M X for a random variable X is a real number
satisfying the inequalities P(X > M X) > 1/2 and P(X < MX) > 1/2.

Key in the passage from Theorem 1 to Corollary 2 is the observation that for
the special case of A convex in [0, 1], the convex distance controls the Euclidean
distance.

Lemma 3. Let A convex in [0,1]" and x € [0,1]". Then dg(z, A) < dc(z, A).

We postpone the proof of this lemma, and note that the lemma and the theorem
imply
Belr(XA?/4 < 1/Pp(X € A)

for any convex subset A of [0,1]". From here it is a short walk to Corollary 2.
Indeed, let @ > 0 and take A = {F < a}. Observe that by the Lipschitz property,
if X € {F > a+t} for some ¢t > 0, then dg(X,A) > ¢. Then by applying
Chebyshev’s inequality to the LHS of (7), we have

P(F(X)>a+t)e""/* <1/P(F(X) < a).
Now taking a = M F(X) we get the upper tail estimate
P(F(X) = MF(X) >1) <2 "/4
and taking a = M F(X) —t we get the lower tail estimate
P(F(X)— MF(X) < —t) < 2 1/4

(where the definition of median has given us the prefactors 2). The desired result
follows from union bound. O

Proof of Lemma 3. Suppose dc(z, A) < t. Then by definition of convex distance,
there exists a convex combination w = """ \;§; of vectors §; € Ua(z) 1 <i<m
such that |w||g < t. Now for each i, §; € Us(x) means there exists z; € A —z
supported by §;. Let z = > ", N\;Z;. Then z € A — x by convexity. z; € [0,1]"
implies that each component of Z; is bounded by 1, and since each component
is only nonzero when the corresponding component of s; nonzero, we have that
each component of Z; is bounded by the corresponding component of §;. Thus,
dp(z, A) < ||Iz|lg < ||w||g < t, and the claim follows. O
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2.3. Proof of the isoperimetric inequality. We now present Talagrand’s proof
of Theorem 1 by induction on n. For the case n = 1, note that do(z, A) = 0 if
z € A and do(z, A) =1 if z is not in A. Now we must show

e'/4(1 — P(A)) + P(A) <1/P(A)

which follows from e*(1 —u) + u < 1/u for all u € [0,1]. The case n = 1 is
established.
For the inductive step we need a Lemma:

Lemma 4. a) For all u in (0,1] we have

)\inf eIy =2 <9y, (5)
€[0,1]

b) e/t <2 (Pf: e < 2%)

Proof. If u > e~1/2 take § = 1 + 2logu. Otherwise take @ = 0. Then do calculus.
O

Assume the result holds for n. Let Q' = Qq x --- x Q,, a product probability
space with product measure P, and let 2,11 be another probability space with
measure fi,11. Let Q@ = Q' x Qp11. Let A C Q and 2 € Q. The proof of the result
for n + 1 follows these steps:

(1) Obtain an inequality for do(x, A) from consideration of “slices” and the
“projection” of A in €/, and convexity.

(2) Apply Hélder’s inequality and the induction hypothesis.

(3) Optimize using the Lemma.

(4) Fubini.

For a point z € Q we write z = (2/,w), 2’ € Q' ,w € Q11. Let A(w) = {2’ €
Q" : (¢/,w) € A} be the w-slice of A, and B = |J,,c, A(w) be the projection of A
to Q™. Let = (2/,w) € Q"!. The key observation that gets the proof rolling is
that we can bound the convex distance dc(x, A) in terms of the distances to the
sections A, and the projection B.

We again think of the s € Uy (x) as listing the coordinates it is sufficient to vary
along in order to get from x to A. We see two ways to get to A from z = (2/,w):
if A(w) is nonempty then we can get there by leaving the n+ 1 coordinate w fixed
and varying the other coordinates (for which we would consult the travel plans in
Ua(w)(2)); we can also leave w fixed and walk into B, which is the shadow of A
in €, and then move up or down to get into A.

Phrasing these two travel plans in terms of Ua(x),Us(,(2'), and Up(2'), we
have that if s € Uy(,)(2') then (s,0) € Ua(z). If t € Up(2') then (t,1) € Ua(x).

Taking convex hulls, if £ € Vy(,,)(2") and ¢ € Vp(2'), then (£,0) and (¢,1) are
in V4(x), and by convexity, A(&,0) + (1 —X)(¢,1) € Va(z) for all A € [0,1]. Hence
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we have for all A € [0, 1] and conditional on A(w) nonempty

do(z, A) < [ME,0) + (1= A)(G De
=8+ (1 =N 1= Ne

and by convexity of u — |ul% on R,
do(, A2 < N+ (1= NCE+ (1= N2 < N+ (1= NI¢E + (1= V)2
Since £ and ¢ were arbitrary we have
do(z, A)? < Mo (', Aw))? + (1 — Nde(2', B)? + (1 — N2

In the case that x = (2/,w) is such that A(w) is empty, the only plans to get from
x to A are of the form (¢, 1) for some t € Ug(z'), and we get the same estimate as
above with A = 0. (Note that B nonempty since A is assumed to be nonempty.)

Talagrand notes that the main trick of the proof is to resist the temptation to
optimize in A at this point! Instead we fix w, exponentiate the inequality and
integrate over '. Conditional on A(w) nonempty we have

/ (@' @). AP /4 g p o)

1-X
< 6(17)\)2/4 </ 6dc( /4dP > < (2',B)? /4dP( )>
A

S <P<Al<w>>) <P<13>>1

1 ana (173(14(‘0)))_A
P(B) P(B) ’

< N4 / Mo (@ Aw)?/4o(1-Ndc (@', B)*/4g p (/)

where we have applied Hélder’s inequality and the induction hypothesis. In the
case that A(w) is empty we have

do(a! ). AR /Agp(phy < 1 (1-X)?/4
//e d (x)_P(B)e :

We now optimize A by applying the lemma. For A(w) nonempty we apply part
(a) of the lemma with v = P(A(w))/P(B) (which is in [0, 1] by monotonicity of

P) to obtain
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For A(w) empty, applying part (b) of the lemma gives the same estimate. Now
we have

[ e apaan < g (2~ o)
1 P ® u(A) <2_P®,u(A)>

P®u(A) P(B) P(B)
1
~ Pou(A)
where the last inequality follows from u(2 — u) < 1 for all u € R. O

Remark 5. One might wonder what rationale would lead one to seek and apply a
bound like that of Lemma 4. A clear motivation is that to apply Fubini’s theorem
to integrate out the w dependence we would like the right hand side of (6) to be
a linear function of P(A(w)).

3. THE HERBST ARGUMENT FOR THE UPPER TAIL

We present here a different argument of Ledoux for the upper tail
P(F(X)— EF(X) >1t) < Ce™ " (7)

of Corollary 2 (but with the median replaced by the expectation) based on a log-
Sobolev inequality. The presentation here closely follows that of [Taol2]. First by
a standard regularization argument we may assume that F' is smooth. We first
establish the following log-Sobolev inequality:

Lemma 6. Let F': R" — R be a smooth convex function. Then

B(F(X)ef®)) < (Be®))(log B"®)) + CB(eF M| VF(X)?) (8)
for some absolute constant C' independent of n.
Proof. We begin with the n = 1 case. The trick is to introduce an independent

copy Y of the random variable X in order to take advantage of the Lipschitz
hypothesis. Indeed, for such a Y we note that

E(F(X)— F(Y)(e"X) — Py =9 F(X)e!"X) —2EF(X)Ee!X)
so that the left hand side of (8) can be rewritten

EF(X)Ee"™X) 4 %E(F(X) — F(Y))(eFC) — Py,

The first term can be bounded by the first term on the right hand side of (8)
with Jensen’s inequality. For the second term, note that by F' Lipschitz and X, Y
bounded we have
F(X) - F(Y) = O(VF(X)])
and
eF'0 P ) = (PN VF(X)))
which give the claim.
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Now we assume the claim for n — 1, and write X = (X', X,,), where X' =
(X1,...,X,-1). Conditioning on X,, we can apply the induction hypothesis to
get

E(F(X)e" ™M |X,) < f(Xn)e! X+ CB(" NV F(X)P|X,) (9)

where f(X,) := log E(e"'X)|X,,), and V' is the n — 1-dimensional gradient. For
the expectation of first term on the right hand side, we can apply the n = 1 case
to get

Ef(X,)e!Xn) < Bef/Xn)10g Bef (Xn) 1 0" E(ef )| 1(X,,)[2). (10)

The first term on the right is just Eef(X) log Eef'(X) . As for the second term, we
note that by the chain rule

f/(Xn) = eif(Xn)E(eF(X)Fwn (X)[Xn)-

Squaring this and applying the Cauchy-Schwarz inequality to the conditional ex-
pection gives

(X < e B (01X, E(" |y, (X)X )
= e T BBy (X)X,

Inserting this in (10) and combining our estimates in (9) completes the induction.
O

To deduce the upper tail estimate, we apply the above lemma to sF' for s > 0:
EsF(X)etr'X) < (Be* X)) (log BT X)) 4 0s?Best' X)),

If we let H(s) = Ee*X), we can rewrite the above as the differential inequality

d 1
—(—log H <C.
(L logH(s) < C

On the other hand, from Taylor expansion we see that
% log H(s) — EF(X)
as s = 0. Combining these estimates we have
% log H(s) < EF(X) + Cs

which we rewrite as
EesF(X) < eSEF(X)+082

(7) now follows from Markov’s inequality and optimizing in s.
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4. NECESSITY OF THE CONVEXITY HYPOTHESIS

The convexity hypothesis in Corollary 2 cannot be dropped, as demonstrated
by the following examples. The first was posted in the comments of [Tao|, and
the second is given in [Led01].

Example 7. Consider the discrete cube {0, 1}" with Hamming (¢') distance and
uniform product measure. Let

F(z) = max(min(|z|1, n/2 + v/n),n/2 — /n)/n*/*.
This function is O(1)-Lipschitz with respect to Euclidean norm. Indeed, since F
only has range O(n'/4), it suffices to verify the Lipschitz property for |z — y|y =
O(n'/*). Then we have |z — y|1 = |z — y|3 < n'/4|z — y|o.
The function can be extended to a O(1)-Lipschitz function on R™ which is not
convex, and concentrates at scale O(n!/4) rather than O(1).

Example 8. With the same metric measure space as above, let A be the “hered-
itary set” {y : >.r,yi < n/2} (such sets {y : >.° ;y; < A} are the isoperi-
metric analogues of unit balls in Euclidean space with Lebsgue measure). Let
F(z) = d(x, A) be the Euclidean distance from x € R" to A. F' is 1-Lipschitz but
not convex.

Now consider the set Bs = {z : Y ;" ; —n/2 > 6y/n} C {0,1}". The we have
Bs C {x:d(z, A) > v/én'/*}. Indeed, for any = € Bs and any y € A,

n n n
V<D i —n/2<) (wi—y) <Y | —uil
i1 i=1 i=1

Hence by monotonicity of the uniform product measure P and the central limit

theorem,

i1 Ti —
NLD

for 6/sufﬁciently small independent of n. Here again, F' concentrates at scale

> nl/4,

P({F(z) > Von'/*}) > P({Z n/2 > 4}) > 1/10

5. APPLICATIONS

In this section we present applications of Theorem 1 to prove concentration
for eigenvalues of random matrices and for the length of the longest increasing
subsequence of a random sequence. Theorem 1 and Corollary 2 have a vast number
of applications; below we list a few of these with some references for the interested
reader.

Applications of Corollary 2 in random matrix theory (see [Taol2]):

e Can be used to control the distance of a random vector to a hyperplane.
This is related to studying the probability of singularity of (say) a 0 — 1
matrix, since singularity occurs when one of the rows is in the span of the
other rows.
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e Concentration of Schatten norms ||M| g = (tr(M*))'/* which can be
used to the problem of finding almost sure limits of moments of the (ran-
dom) empirical spectral distribution to finding the limits of their expec-
tations.

e Concentration for convex functions on the spectrum [GZ00].

Applications of Theorem 1 in combinatorial optimization (see [Tal95,Tal96,Ste97]):

e Concentration for the length of the longest increasing subsequence of a
random permutation (or equivalently, of the coordinates of point selected
uniformly at random from [0, 1]").

e Stochastic bin packing (Talagrand’s first use of his inequality): draw n
numbers uniformly at random from [0, 1], and consider the smallest num-
ber of bins of size 1 needed to store n objects with sizes given by the n
numbers. Whatever it is, it concentrates sharply around its median for n
large!

e Traveling salesman problem and minimal spanning tree.

e First time passage percolation.

5.1. An equivalent definition of convex distance. There is an equivalent
definition of the convex distance dc(z, A) that is used for applications (the above
definition is only used for the proof!). Recall that the Hamming distance between
points x and y in a product space €2y x --- x ), is given by

du(z,y) =#{i:x; #y;, 1 <i <n} = Z 1{%‘7&%}'

=1

For any o € RY, consider the weighted Hamming metric

do, (LL’, y) = Z all{:vﬁéyl}
=1

and let
D(z, A) = sup dq(z, A), (11)
|a|=1
where dq(z, A) = infyca do(x,y) and | - | denotes Euclidean norm.

Proposition 9. D(z, A) = do(z, A).

Proof. We first show D(z,A) < do(z,A). Let a« € R%, |a] = 1. Then by first
applying the definition of U4 (x), then using the fact that the minimum of linear
functional on a convex set is equal to the minimum over the set of extreme points,
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and finally applying the Cauchy-Schwarz inequality, we have

da(x,A) = yilelgzail{xi#yi}
=1

= inf «a-s
seUx(x)

= inf ao-v
vEVy ()

< inf || =do(z, A).

vEVy ()

Taking the supremum over «, we have the desired inequality.

For the sake of completeness we prove the reverse inequality, though the above
is sufficient for our purposes. Let z € Va(x) such that |z| = do(x, A). If |2| =0
we are done. Otherwise, let a = z/|z| and let v be another point in V4(x). Then
by convexity, Av + (1 — X)z € Va(z) for any A € [0,1], so

2> < |z4+ My — 2)]2 = |2> + 2 z - (v — 2) + N2|v — 2|2

Hence 0 < 22 - (v — 2) + AJv — z|%, and setting A = 0 implies that z - (v — z) > 0.
It follows that a- v > |z| = de(z, A) for all v € V4(x). Then we have

D(z,A) > dy(z,A) = Uei‘gf(x) a-v>do(x, A).

and we are done. O

The power of this formulation of convex distance is the freedom we have with
the weights «;. Indeed, note that in the convex distance definition (11), the
supremum over « is taken at each point x € . Hence, a can be allowed to vary
with . We now see how the game of applying Talagrand’s inequality reduces to
the problem of finding an appropriate weight function «(z). Indeed, it follows
from the above proposition and Theorem 1 that

P(da(x) (qu) > t) <

for any weight function a.

While the full convex distance is not so easy to apply directly as, say, Euclidean
distance (a reason for the appeal of Corollary 2), we will in applications that a
weight function often suggests itself.

For subsets A, B of a product space {2, if we suppose that B C Af = {z :
de(z, A) > t}, then Theorem 1 and monotonicity imply P(A)P(B) < e~**/4. The
following phrases the hypothesis B C A{ in terms of the Hamming definition (11)
of the convex hull distance.

Corollary 10. Let Qq,...,8, be probability spaces and let 2 be the product space
with product probability measure P. Let A and B be measurable subsets of ).
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Suppose that for every x = (x1,...,2,) € B there is « = a(x) € R} such that for
a”y = (yla--"yn) € A7

n n 1/2
Z ilfgityy 2t (Z 0412) (12)
i=1 1

for some t > 0. Then
P(A)P(B) < e /4, (13)

As before A and B will typically come to us as sets of the form {X < a}, {X >
b} for some random variable X, and concentration around a median M X would
again be demonstrated by alternately taking a and b as the median or shifts of
the median by t. We demonstrate the use of this formulation with examples.

5.2. The top eigenvalue, take 2. In this section we present an application the
above formulation of Talagrand’s inequality for the top eigenvalue of a random
matrix, as originally given in [KV02], as an instructive (though lengthier) alter-
native path to the result obtained from Corollary 2. This is a warmup to a proof
along the same lines of concentration for other eigenvalues, as given in [AKV02],
which cannot follow directly from Corollary 2.

For 1 <i < j < nlet x;; be independent (real) random variables, |z;;| < 1.
Let for each 1 < j < i < nset xj; = x;; and let X be the symmetric n x n matrix
with entries ;5. Let A{(X) > --- > X\, (X) denote the eigenvalues of X.

Theorem 11. (Krivelevich, Vu ’00) P(|A1(X) — M\ (X)| > t) < fe—t?/32

(This theorem was proved as part of a paper on algorithms for approximating
statistics of random graphs.)

Proof. First the product space with product measure: let m =n(n+1)/2, Q™ =
[—1,1]™, and P be the joint distribution of the entries on .

Let M e R, t>0. Let A={X : \(X)< M} and B={Y : \(Y) > M + t}.
We'll occationally abuse notation by writing matrices as vectors with m entries
and sometimes as doubly-indexed matrices or triangular arrays.

If we can get an inequality like (13) for this choice of A, B, we’ll be able to
deduce concentration around a median in the usual way. So our job now is to
find, for each Y € B, a vector of weights o € R (alternatively written o =
(eij)i<i<j<n), such that for all X € A, we have

1/2
n /

Z O‘ijl{xiﬂéyij}zd Z Oézzj (14)

1<i<j<n I<i<j<n

for some constant ¢ > 0 (from the statement of the theorem one sees that we have
c=1/2V2).

So how can we get oY) that will accomplish (14))7 We'll get it from the
eigenvector of Y associated to its largest eigenvalue.
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The Answer:

For Y € B, let v be the unit eigenvector of Y associated to the eigenvalue
AM(Y). For 1 <i < mn,let ay; = vl-z, and for 1 < i < j < n,let a;; =
2|vgl[vj.

Let’s proceed as if we didn’t know this. For given X and Y, we want to
translate the inequalities A\ (X) < M, A (Y) > M + t into an inequality like
(14) involving the entries of the matrices. We can use v to do this: we have
v'Yo =X (Y) > M+t and v'Xv < A\ (X) < M. Now we follow our noses:

t <Y — X)v = Z vi(Yij — Tij)v;

1<i,j<n

<2 Z |/Ui”vj‘1{$ij7éyij}

1<i,j<n
=2 E: Qijlig 2y
1<i<j<n

where o;; is as defined in The Answer.
It only remains to get a bound on the Euclidean norm of «.

Z O‘?j =Y v+ 43 1<icj<n PARCE (15)
I<i<j<n
2
<2(30 )" =2 (16)

So for our choice of a we have

1/2
" /

t
Z Qij Ly tyy 2 1/2 2 202 Z O‘?J’
I<i<j<n 1<i<j<n
The result follows from Corollary 10 and substituting M = MA(X) and M =
MM (X) -t O

Note that we can get the same concentration result for the bottom eigenvalue
An by taking A = {X : \py(X) > M +t},B={Y : \,(Y) < M} (but still using
the eigenvector of Y!).

Remark 12. Notice the slight inefficiency in passing from (15) to (16): we could
let the diagonal entries vary on a set of diameter 2v/2 instead of 2 and get the
same estimate. This is an artifact of double counting the off diagonal entries while
only counting the diagonal ones once.

5.3. Other eigenvalues. The above approach can actually be extended to obtain
concentration for other eigenvalues, which are non-convex statistics and hence do
not admit immediate application of Corollary 2. (We note however that with some
additional effort a strengthening of the following result was actually obtained by
Meckes using Corollary 2 [Mec04].)
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Theorem 13. (Alon, Krivelevich, Vu ’02) (Same setup as before.) For each
1 <s<n,

P(IAs(X) = MA(X)| > t) < 4e™1°/325, (17)

Proof. With the same setup as before, we now fix 1 < s <n,let M € R, t > 0,
and let A ={X : \;(X) <M}, B={Y : \s(Y) > M + t}.

Now what are the proper weights a? Here we construct them from the s unit
eigenvectors of Y associated to its s largest eigenvalues.

For fixed Y, let v', ... v* be those eigenvectors of Y, and for 1 < p < s we write

P = (o], o oh).
The Answer:
For 1 < i < m,let ay = Z; ()2 and for 1 < i < j < n, let a5 =

2\/Zp 1 \/Z _,(v))2. Then
Z a?j < 257 (18)

1<i<j<n
and VX € A,
Z gL,y 2 t/2 (19)

1<i<j<n

As before we first show (19)). The key intuition comes from the Courant-
Fischer minimax characterization of eigenvalues: we can find a unit vector u in
the span of the first s eigenvectors of Y that is orthogonal to the span of the
largest s — 1 eigenvectors of X. This is how we narrow in on As.

Let u be such a vector and write u =37 _, ¢,vP. We have uXu < X(X) <M

and u'Yu > \s(Y) > M +t. Hence,

t<u'(Y — X)u= Z wi(Yij — Tij)ug

1<ij<n
S S
= D Wi — =) Qe eqvd)
1<4,5<n p=1 q=1

<2 3 Yot IIZ%U Ly
1<i,5<n p=1

s

<2 3 (SO O
p= p=

1<i,5<n p=1 p=1
s
“2 3 (A
1<i,5<n p=1 p=1

Letting o as in the answer we have (19)).
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Now for (18)):

dooaih =) O @ +4 Y QDO (W)
1<i<j<n i=1 p=1 1<i<j<n p=1 p=1
<203 ) (P =200 ) ()% =24
i=1 p=1 p=1i=1

The same estimate for \,,_s11(X) follows as before by letting B = {Y : A—s+1(Y) <
MYy, A={X: A—s+1(X) > M +t} and finding a u in the span of the eigenvectors
of Y associated to its smallest s eigenvectors, and orthogonal to the corresponding
s — 1 eigenvectors of X. O

Remark 14. Our concentration gets worse as we head deeper into the “bulk” of the
spectrum. However, we have reason to believe concentration in the bulk should
be the same, as this can be verified for Gaussian entries using Gaussian concen-
tration estimates for Lipschitz functions (which do not require the hypothesis of
convexity). This holds more generally for any measure that obeys a log-Sobolev
inequality (of which the Gaussian is the model example). Our functional logarith-
mic Sobolev inequality in section 3 was obtained with the added assumption that
the function is convex, and no hypotheses on the measure apart from boundedness.

5.4. The longest increasing subsequence. Let X = (z1,...,z,) be uniformly
distributed in © = [0,1]", let J(z) be the longest increasing subsequence of
{z1,...,2y), and let F,(z) = |J(z)| be its length. We will use Corollary 10
to show that F;, concentrates tightly around its median M F,.

Note that we cannot apply Corollary 2 as F,, is not convex. For instance, with
n = 3, taking x = (0,1,.6) and y = (.8,0,.6) we have that F3(x) = 2 = F3(y),
but F3(*Y) = F3((.4,.5,.6)) = 3. However, F, is 1-Lipschitz with respect to the
Hamming metric, which is essentially what makes it ammenable to analysis with
the deeper Theorem 1.

We let @ > 0 and A = {F(y) < a}. Our construction of the weights a begins
with a simple observation: for any z,y € €,

n
i=1
Indeed, if J(z) is the longest increasing subsequence of x, then by taking those

elements of J(z) shared by y we have an increasing subsequence of y, the length
of which is bounded by F,,(y). From this we have

Fn(:U) — Fn(y) < Z 1{xi€J($)}1{$Héyi}
=1

which is starting to look like (12)). If we let
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we have
1 n
dam(fmy):i 1331'6736 1%#1
(z) m; { (z)} HziFy: }
1
> —(F,(z) — F, .
> Fn(x)( (z) (y))
For the convex distance from z to A we have
de(a, A) > M‘

For t > a the function g(t) = (t — a)/+/t is monotone increasing. From this and
Theorem 1 it follows that

F.(z)—a < t

P(Fu(x) > a+1t) < P( )

F.,(z) a4t
t
< P(d A) > ——
= ( C(xv ) = (L+t)
1 2
< 1 t/Aat)
(4)
Taking a = M,, := M F,,(z) we get the upper tail estimate
2
P(F, >M,+1t) <2 Y o S—
(Fo(z) 2 My + 1) < 2e3p(~ )
and taking a = M,, —t we get the lower tail estimate
2

P(Fn(z) < M, —t) < QGXP(—4Mn)-

Hence, for large n F,(x) is roughly M, +O(y/M,,). It can be shown by elementary
means (see e.g. [Ste97]) that M,, = O(y/n), so the above concentration estimates
are enough to prove a strong law of the form (F,(z) — M,)//n — 0 a.s.

Remark 15. Much more is known about the asymptotics of F,. For instance, it has
been shown by a variety of methods that F,,/y/n — 2 almost surely. Furthermore,
in [BDJ99] it was shown that n~Y/%(F, — 2y/n) converges in distribution to the
Tracy-Widom law, putting it in the same universality class as our first example,
the top eigenvalue of a random Hermitian matrix. For an entertaining survey of
these results and their relation to patience sorting of cards, see [AD99].

REFERENCES

[AD99] David Aldous and Persi Diaconis. Longest increasing subsequences: from patience sort-
ing to the Baik-Deift-Johansson theorem. Bull. Amer. Math. Soc. (N.S.), 36(4):413—
432, 1999.

[AKV02] Noga Alon, Michael Krivelevich, and Van H. Vu. On the concentration of eigenvalues
of random symmetric matrices. Israel J. Math., 131:259-267, 2002.



16

[ASO8]

[BDJ99)]

[GZ00]
[KV02]
[Led01]
[Mec04]

[Ste97]

[Tal95]

[Tal96]
[Tao]

[Taol2]

NICK COOK

Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, third
edition, 2008. With an appendix on the life and work of Paul Erdos.

Jinho Baik, Percy Deift, and Kurt Johansson. On the distribution of the length of
the longest increasing subsequence of random permutations. J. Amer. Math. Soc.,
12(4):1119-1178, 1999.

A. Guionnet and O. Zeitouni. Concentration of the spectral measure for large matrices.
Electron. Comm. Probab., 5:119-136 (electronic), 2000.

Michael Krivelevich and Van H. Vu. Approximating the independence number and the
chromatic number in expected polynomial time. J. Comb. Optim., 6(2):143-155, 2002.
Michel Ledoux. The concentration of measure phenomenon, volume 89 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
Mark W. Meckes. Concentration of norms and eigenvalues of random matrices. J.
Funct. Anal., 211(2):508-524, 2004.

J. Michael Steele. Probability theory and combinatorial optimization, volume 69 of
CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics (STAM), Philadelphia, PA, 1997.

Michel Talagrand. Concentration of measure and isoperimetric inequalities in product
spaces. Inst. Hautes Etudes Sci. Publ. Math., (81):73-205, 1995.

Michel Talagrand. A new look at independence. Ann. Probab., 24(1):1-34, 1996.
Terence Tao. http://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-
of-measure/.

Terence Tao. Topics in random matrix theory, volume 132 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2012.



	1. Two of Talagrand's Inequalities
	2. Talagrand's proof
	2.1. The convex distance
	2.2. Proof of cor1
	2.3. Proof of the isoperimetric inequality

	3. The Herbst argument for the upper tail
	4. Necessity of the convexity hypothesis
	5. Applications
	5.1. An equivalent definition of convex distance
	5.2. The top eigenvalue, take 2
	5.3. Other eigenvalues
	5.4. The longest increasing subsequence

	References

