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Abstract

We introduce new, readily computable invariants of Legendrian knots and links in stan-
dard contact three-space, allowing us to answer many previously open questions in contact
knot theory. The origin of these invariants is the powerful Chekanov-Eliashberg differential
graded algebra, which we reformulate and generalize. We give applications to Legendrian
knots and links in three-space and in the solid torus. A related question, the calculation of

the maximal Thurston-Bennequin number for a link, is answered for some large classes of
links.
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Chapter 1

Introduction

1.1 Legendrian links in standard contact R3

There has recently been an explosion of interest in contact geometry, largely because of
its impact on the geometry and topology of three-manifolds. Contact geometry is also
intricately linked with the theory of four-manifolds; see, e.g., [KM] for a link between
contact structures and four-dimensional gauge theory.

In studying contact three-manifolds, two special classes of knots and links, Legendrian
and transversal, play a critical role. Probably the first application of knots in contact
geometry was Bennequin’s famous demonstration [B] of the existence of “exotic” contact
structures on R3, using transversal unknots; this work inspired Eliashberg’s central tight-
versus-overtwisted dichotomy for contact structures on three-manifolds [E2]. Since then,
Legendrian knots have been instrumental in distinguishing between homotopic contact
structures on manifolds such as homology spheres [LM] and the three-torus [Kanl]. Knots
in contact geometry have also produced consequences for general three-manifold topology;
for instance, Rudolph [Ru3] has established a relationship between invariants of Legendrian
knots and sliceness.

The question underlying contact knot theory is simple: when are two Legendrian or
transversal links the same, i.e., isotopic through Legendrian or transversal links? This
question, first explicitly stated in [Ar], also appears in Kirby’s problem list [Kir]. We
restrict our attention to links in R® with the standard contact structure, since this provides
a local model for any contact manifold. We will further devote our attention solely to
Legendrian links, which are better studied and seem to have more structure; the study of
Legendrian links may also produce results for transversal links.

An isotopy through Legendrian links is called a Legendrian isotopy. There are two “clas-
sical” Legendrian-isotopy invariants of Legendrian knots in standard contact R3, Thurston-
Bennequin number and rotation number. (The story for multi-component links is similar
but a bit more complicated.) The first result towards a classification of Legendrian-isotopy
classes of knots was Eliashberg and Fraser’s demonstration [EF] that the classical invariants
completely determine the Legendrian-isotopy class of an unknot. Since then, the classical
invariants have also been shown to form a complete set of invariants for torus knots and
the figure eight knot [EH].

A breakthrough on the Legendrian isotopy problem occurred in 1997, when Chekanov
[Ch] and, independently, Eliashberg and Hofer (unpublished) showed that there are knot
types for which the classical invariants do not suffice to characterize Legendrian-isotopy



classes. More specifically, they demonstrated that there are two 52 knots, in the familiar
terminology of the knot table from [Rol], which have the same classical invariants, but are
not Legendrian isotopic.

The tool they used is a new invariant of Legendrian links, which we will call the
Chekanov-Eliashberg differential graded algebra (DGA). Eliashberg and Hofer derived this
algebra from a relative version of the contact homology introduced in [E4]. The beauty of
the DGA is that, unlike general contact homology, there is a simple method for comput-
ing it from knot diagrams. Chekanov, motived by the relative contact homology picture,
discovered a purely combinatorial formulation of the DGA, and proved its invariance com-
binatorially, in [Ch]; his work is the starting point for most of this dissertation.

Etnyre, Sabloff, and the author [ENS] have since given a rigorous treatment of the
relation between Eliashberg and Hofer’s relative contact homology and Chekanov’s com-
binatorial theory. By using ideas from Floer homology concerning coherent orientations,
[ENS] also lifts the DGA for a Legendrian knot K from an algebra over Z/2, graded over
Z/(2r(K)), to one over Z[t,t 1], graded over Z.

The Chekanov-Eliashberg DGA, though extraordinarily useful as a tool for distinguish-
ing between Legendrian links, has two drawbacks. The first is that, in practice, it can be
difficult to use. Chekanov defines the DGA in terms of the Lagrangian projection of a Legen-
drian link, but it is not easy to manipulate Lagrangian-projected knots. More importantly,
it is hard in general to tell when two DGAs are the same. Until now, the only known tech-
nique was to use polynomials defined by Chekanov, which we call the Poincaré-Chekanov
polynomials; in essence, these calculate the homology of a finite-dimensional quotient of the
DGA. These polynomials, however, are useful only in some cases.

The second drawback of the Chekanov-Eliashberg DGA is that it vanishes for any Legen-
drian link which is a stabilization. In practice, this renders it useless for any link which does
not maximize Thurston-Bennequin number, since stabilization lowers Thurston-Bennequin
number by one. It is thus important to know when a link maximizes Thurston-Bennequin
number, and to find invariants which do not vanish for stabilized links.

Broadly speaking, the goal of this dissertation is to improve our understanding of Leg-
endrian links in standard contact R? by addressing the problems mentioned above. We will
reformulate the DGA in the front projection, which is much more often used in practice
than the Lagrangian projection, and refine the DGA in the process. Next we introduce new
computable invariants from the DGA, most notably the characteristic algebra; these are
quite a bit more effective in distinguishing between Legendrian links than previously known
invariants. We use our new techniques to answer several open questions about Legendrian
links. Finally, we describe invariants which may give interesting information for stabilized
links, and we calculate the maximal Thurston-Bennequin number for two large classes of
links, two-bridge links and three-stranded pretzel links.

There is obviously much still to be done in this subject. Eliashberg, Givental, and
Hofer [EGH] have recently introduced a notion of symplectic field theory which generalizes
contact homology; we would like to understand invariants of Legendrian links obtained from
symplectic field theory. Also, one important property of Legendrian knots is that we can
perform Legendrian (—1)-surgery on them to obtain another tight contact manifold [E3].
Does the new manifold encode the Chekanov-Eliashberg DGA of the knot, and does the
DGA give us information about the manifold? Further, more specific open questions are
asked throughout this dissertation, but especially in Sections 3.2 and 6.4 and Remark 5.2.7.

Here is an outline of the rest of this dissertation. We supply the necessary technical
background in Section 1.2, and review Chekanov’s construction of the DGA in Section 1.3.
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Chapter 2 defines the DGA (more precisely, the lifting described in [ENS]) for front projec-
tions of knots, and discusses an improved version of the DGA for links as well. In Chapter 3,
we define the characteristic algebra and demonstrate how it incorporates previously known
invariants. Chapter 4 is devoted to applications of the theory from Chapters 2 and 3, specifi-
cally to distinguish between several previously indistinguishable Legendrian knots and links.
Chapter 5 introduces a new construction, the Legendrian satellite, and uses it to establish
some results about Legendrian links on the solid torus; in the future, Legendrian satellites
may also produce useful invariants of stabilized links. In Chapter 6, we address a slightly
different subject by computing maximal Thurston-Bennequin numbers for two-bridge and
pretzel links.

To make this dissertation more self-contained, we include proofs in Appendix A of the
main results about the Chekanov-Eliashberg DGA for the front-projection picture, rather
than simply referring to the Lagrangian-projection proofs from [Ch] and [ENS]. Appendix B
gives a table of maximal Thurston-Bennequin numbers for prime knots with nine or fewer
crossings, improving on the table from [Tan].

A note about original content: a fair amount of this dissertation has already appeared
in preprints by the author. Chapters 2, 3, and 4 are taken from [Ng3|, while the content
of Chapter 6 for two-bridge links, as well as Appendix B, is from [Ng2|. Although not
explicitly used here, [Ngl] is subsumed into Section 4.1. No material from the coauthored
papers [ENS| and [NT] appears in this dissertation, although results from these papers are
cited in Chapters 2 and 5, respectively.

1.2 Background material

This section is a clearinghouse for the definitions and results needed for the rest of the
dissertation, and also indicates the conventions we will use. We will also suggest a way in
which this dissertation connects with the theory of transversal links.

A contact form on a smooth three-manifold M is a global 1-form « such that a Ada # 0
everywhere on M; then ker a gives a completely nonintegrable distribution on M, which we
call a contact structure. We may view contact structures as the odd-dimensional analogue
of symplectic structures on even-dimensional manifold. A contactomorphism between two
contact manifolds is a diffeomorphism mapping one contact structure to the other.

As a matter of convention, we will use the word “link” to denote either a knot or a
link. Links which are not knots will be called “multi-component links” for clarity where
necessary. All multi-component links are assumed to be ordered; that is, there is a specific
ordering to the components of the link. If L1,... , L; are the ordered components of a link
L, we write L = (Ly, ..., Lg).

A Legendrian (resp. transversal) link in a contact three-manifold M is a link on which
« vanishes identically (resp. never vanishes). Two Legendrian links are Legendrian isotopic
if they are isotopic through Legendrian links; we may similarly define transversal isotopy
for transversal links. The relative version of a celebrated theorem of Gray [Gr] implies that
two links are Legendrian isotopic if and only if there is an ambient contact isotopy of M
mapping one to the other.

The standard contact structure on R? is given by oo = dz —y dz. By Darboux’s Theorem,
any point in a contact three-manifold has a neighborhood contactomorphic to R?® with the
standard contact structure.

There are two standard methods of representing Legendrian links in standard contact
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Figure 1-1: The Legendrian Reidemeister moves which relate Legendrian-isotopic fronts.
The same moves, reflected about the z (horizontal) axis, are also allowed.

R? via projections to R?: the Lagrangian projection to the zy plane, and the front projection
to the zz plane. We consider each of these projections separately.

Given the Lagrangian projection of a link, we can recover the link by setting z =
[ ydz. This is unique, up to translation in the z direction for each component of the
link. The Lagrangian projection of a link gives a link diagram in R?, i.e., an immersion
of the appropriate number of copies of S! into R?, along with overcrossing-undercrossing
information. Determining conversely whether a link diagram is the Lagrangian projection of
a Legendrian link is not easy, although a reasonably useful necessary-and-sufficient condition
is given in [Ch]. The signed area [ ydz enclosed by a component of the link diagram must
be zero; each crossing in the link diagram also implies an inequality on the areas of the
regions into which the diagram divides R2. We will deal only with generic link diagrams,
for which all crossings are transverse double points.

Define a front to be an immersion of some number of copies of S! into R?, with no vertical
tangencies, and smooth except for cusp singularities where the front changes direction in .
The front projection of a link is a front, and we can recover the link from its front by setting
y = dz/dz. It is unnecessary to specify overcrossing-undercrossing information for fronts,
since the strand with greater negative slope has smaller y coordinate and hence crosses over
the other strand. We will deal only with generic fronts, for which all singularities are either
cusps or double points.

For practical purposes, fronts are often more useful than Lagrangian projections, be-
cause of the difficulty mentioned above in determining when a link diagram represents a
Legendrian link. There is a simple condition, in terms of fronts, for two Legendrian links
to be Legendrian isotopic: they must be related by a series of the Legendrian Reidemeister
moves shown in Figure 1-1 [Swi].

The two classical invariants of oriented Legendrian knots under Legendrian isotopy are
the Thurston-Bennequin number tb and the rotation number 7; these can be easily defined
for either projection. For the front projection of an oriented Legendrian knot K, we define

(k) =# <+ o —#  —#
=5 (# - #).

For the Lagrangian projection of K, we define

th(K) =#V\ - #X,

12



Figure 1-2: Stabilization of a Legendrian link, in the front projection.

and r(K) is the counterclockwise rotation number (in revolutions) of K traversed once in
the direction of its orientation.

Remark 1.2.1. Regular isotopy and Lagrangian projection. Recall that a regular isotopy
of knot diagrams is an isotopy which avoids the usual Reidemeister move I (adding or
subtracting a loop). In the Lagrangian projection, a Legendrian isotopy is a special case of
a regular isotopy. In this context, tb and r may be more familiar as the classical regular-
isotopy invariants, writhe (cf. Figure 6-1) and Whitney degree; see [Kaul].

Note that tb(K) is independent of the orientation of K, while r(K) is negated when we
reverse the orientation. It is easy to see that tb and r are preserved by Legendrian isotopy.

For oriented multi-component Legendrian links L, we may also define tb and r as above;
in this case, however, tb and r for any subset of the link components also give classical
invariants. For instance, for a two-component oriented link L = (Lj,L2), the full set
of classical invariants is given by {tb(L),tb(L1),7(L1),tb(L2),r(L2)}. Note that (L) =
r(L1) +7(L2), and that (¢b(L) —tb(L1) —tb(L2))/2 = 1k(L1, Lg) is the usual linking number
of L1 and LQ.

The operation of stabilization on Legendrian links adds a zigzag to a segment of a front,
as shown in Figure 1-2. (Both S} and S_ will be called stabilizations.) It can be checked
that, up to Legendrian isotopy, stabilization is independent of the segment chosen, as long
as it is chosen in a fixed link component. Thus, for a Legendrian knot K, S (K) and S_(K)
are well-defined up to Legendrian isotopy, and S; commutes with §_. We have

tb(S+ (L)) = th(L) — 1
r(S+(L)) = r(L) £ 1.

In particular, links with maximal Thurston-Bennequin number cannot be stabilizations.

Remark 1.2.2. Transversal knots. If K; and Ky are Legendrian knots of the same topo-
logical isotopy class, then they are Legendrian isotopic after applying a suitable number of
positive and negative stabilizations to each knot [FT]; a corresponding result also holds for
links. We call K; and K» stably Legendrian isotopic if there exists an n such that (S4)" K3
and (S4)" K> are Legendrian isotopic.

The concept of stable isotopy is mainly useful because of transversal knots. Any Leg-
endrian knot K can be slightly perturbed in the direction of the positive normal to K
within the contact structure, to obtain a transversal knot K™, and any transversal knot is
transversally isotopic to such a K. The following result is well-known; see [EFM].

Theorem 1.2.3. If K1 and Ky are oriented Legendrian knots, then the transversal knots
Kf and K2+ are transversally isotopic if and only if K1 and Ko are stably Legendrian
isotopic.

At present, there are no known transversal links which are smoothly isotopic and have the
same transversal linking number, but are not transversally isotopic. We hope in the future
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to use our techniques for Legendrian links to construct examples of such transversal links;
see Remark 5.2.7.

Remark 1.2.4. Legendrian mirrors and inverses. There are other interesting operations
besides stabilization that we can perform on Legendrian links. Given a Legendrian link
L, let the Legendrian mirror m(L) be its image under the contactomorphism (z,y,z) —
(z, —y,—2), and let the inverse —L be L with each component’s orientation reversed. (In
the front projection, m(L) is the reflection of L about the z axis.) We have tb(m(L)) =
tb(—L) = tb(L) and r(m(L)) = r(—L) = —r(L).

It is asked in [FT] if m(L) is always Legendrian isotopic to L when r(L) = 0; clearly
m(L) is always smoothly isotopic to L. Similarly, we can ask if —L is always Legendrian
isotopic to L when r(L) = 0, for link types L which are invertible, i.e., smoothly isotopic to
their inverses.

In [Ngl], the author answers the question of [FT] by giving an example such that
r(L) = 0 and m(L) is not Legendrian isotopic to L; this argument is reprised in Section 4.1.
A recent result of Etnyre and Honda implies that there are invertible connected sums
K1#K> of Legendrian knots Ki, Ky with 7(K1#K2) = 0 and —(K;#K>) not Legendrian
isotopic to K1#Ks. It is not presently known whether there is a Legendrian knot K of
invertible, prime topological type, with r(K) = 0, which is not Legendrian isotopic to —K.
We believe, however, that the DGA over Z[t,¢t~!], which depends on orientation, should be
able to provide examples of such a knot.

1.3 Chekanov’s construction of the DGA

In this section, we summarize Chekanov’s original construction of the DGA invariant from
[Ch], which uses the Lagrangian projection. We will reformulate this construction carefully
in the front projection in Chapter 2, which is self-contained; the reader may thus skip to
Chapter 2 with no difficulty.

For simplicity, we will confine our discussion to knots. Chekanov defined the DGA of a
Legendrian knot K as an algebra over Z/2 graded over Z/(2r(K)); by imposing a coherent
set of orientations on the appropriate moduli spaces, J. Etnyre, J. Sabloff, and the author
[ENS] subsequently lifted this DGA to an algebra over Z[t,t~!], where ¢ is an indeterminate,
graded over Z. We outline the definition of the original DGA over Z/2, and refer the reader
to the two sources above for complete details.

Let K be a Legendrian knot in standard contact R, whose Lagrangian projection is
a link diagram which we also call K. Label the crossings of K by ai,...,a,. The DGA
for K is the free, noncommutative unital algebra A = (Z/2)(a1, ... ,ay), with grading and
differential given below.

To define the grading on A, we temporarily perturb K so that the two intersecting
branches at all crossings are orthogonal. For a crossing a;, consider a path in K beginning
at the undercrossing at a; and following K until we reach the overcrossing at a;. The

_ ‘ N
+ ‘ -
Figure 1-3: Signs associated to the four quadrants at a crossing.
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counterclockwise rotation number (in revolutions) of this path is of the form —(2k + 1)/4
for some integer k; then let dega; = k. It is easy to check that, modulo 2r(K), this is
well-defined. Extending this degree map to all of A (with degl = 0) gives a grading of A
over Z/(2r(K)).

We next define the differential on A. At each crossing, label the four quadrants near
the crossing by the signs given in Figure 1-3. (Note that these signs are the negation of the
signs in [Ch], since we use a differently oriented contact form on R3.) Define an admissible
immersion on K to be an immersion f from the disk D?, with some number of marked
points on its boundary, to R?, satisfying the following conditions:

e f(0D?) lies in K, and f|sp2 is smooth away from the marked points;
e f maps marked points to crossings of K;
e f maps a neighborhood of a marked point to exactly one quadrant at a crossing;

e of the signs associated to the resulting quadrants for all marked points, exactly one is
a+.

The crossing with the + sign is called the positive corner of the admissible immersion; the
crossings with — signs are called the negative corners.

Consider an admissible immersion f with positive corner at a;. We associate to f
the monomial o(f) = aj, - - a;,, where a;,,... ,a;, are the negative corners of f, taken in
counterclockwise order starting after a;. (If f has no negative corners, then we set a(f) = 1.)
Now we define

da; =) a(f);

here the sum is over all diffeomorphism classes of admissible immersions with positive corner
at a;. We can extend this differential to all of A by setting (1) = 0 and imposing the Leibniz
rule O(vw) = (Ov)w + v(Ow).

Remark 1.3.1. Motivation. Admissible immersions are natural objects of study in the rel-
ative contact homology theory developed in [E4]. Since the Reeb vector field in standard
contact R? points in the z direction, Reeb chords in R?® beginning and ending on K corre-
spond to crossings of the Lagrangian projection of K. In the symplectization R? x R of R3,
relative contact homology studies holomorphic curves with boundary on Y x R which limit
to Reeb chords at +oco in the R direction, with one Reeb chord at +o0o and some number
of Reeb chords at —oco. If we project to R3, these holomorphic curves become admissible
immersions, with the limiting Reeb chords becoming positive and negative corners. See
[ENS] for more details.

Example 1.3.2. For the figure eight knot shown in Figure 1-4, with » = 0 and tb = —3, we
can calculate that az, a4, as5,a7 have degree 1, a;,a3 have degree 0, and ag has degree —1.
The differential 0 is given by

0a1 = a¢ + agaz + asazasap 0ay = 1+a3+ asasas
Oas = 1+ aja3+ asazay Oa7 = 1+ as+ azagazas
(90,3 = (90,5 = 80/6 = 0.

The major properties of the differential are that 9> = 0 and 0 lowers degree by 1; the
reader may verify that these properties hold for the example above.

15



Figure 1-4: The Lagrangian projection of a figure eight knot. Crossings and + quadrants
are labelled; — quadrants are omitted to reduce clutter.

Of course, the importance of the DGA stems from the fact that it gives a Legendrian-
isotopy invariant. There is a concept of equivalence of DGAs under which two Legendrian-
isotopic knots have equivalent DGAs; see Section 2.2. Although it is often not easy to tell
when two DGAs are equivalent, Chekanov [Ch] introduced a set of polynomial invariants,
derived from the DGA, which are straightforward to compute. He then used these Poincaré-
Chekanov polynomials (see Section 3.2 for their definition) to distinguish between two 59
knots with identical classical invariants.

Remark 1.3.3. Admissible decompositions. The Chekanov-Eliashberg DGA is not the only
known nonclassical invariant of Legendrian isotopy in standard contact R3. Chekanov and
Pushkar [CP] have developed another invariant based on so-called admissible decompo-
sitions of fronts, inspired by the work of Eliashberg [E1l]. It seems that the admissible-
decomposition invariant is closely related to the Poincaré-Chekanov polynomials; see [Fu.
In particular, there is no known example of Legendrian knots which can be distinguished
through admissible decompositions but not through the Poincaré-Chekanov polynomials.

16



Chapter 2

Chekanov-Eliashberg DGA in the
front projection

This chapter is devoted to a reformulation of the Chekanov-Eliashberg DGA from the
Lagrangian projection to the more useful front projection. In Section 2.1, we introduce
resolution, the technique used to translate from front projections to Lagrangian projections.
We then define the DGA for the front of a knot in Section 2.2, and discuss a particularly
nice and useful case in Section 2.3. In Section 2.4, we review the main results concerning
the DGA from [Ch] and [ENS]. Section 2.5 discusses the adjustments that need to be made
for multi-component links.

2.1 Resolution of a front

Given a front, we can find a Lagrangian projection which represents the same link through
the following construction, which is also considered in [Fer| under the name “morsification.”

Definition 2.1.1. The resolution of a front is the link diagram obtained by resolving each
of the singularities in the front as shown in Figure 2-1.

The usefulness of this construction is shown by the following result, which implies that reso-
lution is a map from front projections to Lagrangian projections which preserves Legendrian
isotopy.

Proposition 2.1.2. The resolution of the front projection of any Legendrian link L is the
Lagrangian projection of another link which is Legendrian isotopic to L.

Note that Proposition 2.1.2 is a bit stronger than the assertion from [Fer| that the regular
isotopy type of the resolution is invariant under Legendrian isotopy of the front.

Proof. We will deal only with a Legendrian knot K; the proof for multi-component links is
similar. It suffices to distort the front K smoothly to a front K’ so that the resolution of
K is the Lagrangian projection of the knot corresponding to K'.

X=X <=0 >—>0
/ /
Figure 2-1: Resolving a front into the Lagrangian projection of a knot.
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XSO i

Figure 2-2: A front projection for the left-handed trefoil (top) is distorted (middle) so that
the corresponding Lagrangian projection (bottom), given by y = dz/dz, with the same x
axis as the middle diagram, is the resolution of the original front. The exceptional segments
in the middle diagram appear as corners.

We choose K’ to have the following properties; see Figure 2-2 for an illustration. Suppose
that there are at most k& points in K with any given x coordinate. Outside of arbitrarily
small “exceptional segments,” K’ consists of straight line segments. These line segments
each have slope equal to some integer between 0 and k—1 inclusive; outside of the exceptional
segments, for any given x coordinate, the slopes of the line segments at points with that
x coordinate are all distinct. The purpose of the exceptional segments is to allow the line
segments to change slopes, by interpolating between two slopes. When two line segments
exchange slopes via exceptional segments, the line segment with higher z coordinate has
higher slope to the left of the exceptional segment, and lower slope to the right.

It is always possible to construct such a distortion K’. Build K’ starting from the left; a
left cusp is simply two line segments of slope j and j+1 for some j, smoothly joined together
by appending an exceptional segment to one of the line segments. Whenever two segments
need to cross, force them to do so by interchanging their slopes (again, with exceptional
segments added to preserve smoothness). To create a right cusp between two segments,
interchange their slopes so that they cross, and then append an exceptional segment just
before the crossing to preserve smoothness.

We obtain the Lagrangian projection of the knot corresponding to K’ by using the
relation y = dz/dz. This projection consists of horizontal lines (parallel to the z axis),
outside of a number of crossings arising from the exceptional segments. These crossings can
be naturally identified with the crossings and right cusps of K or K'. In particular, right
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cusps in K become the crossings associated to a simple loop. It follows that the Lagrangian
projection corresponding to K’ is indeed the resolution of K, as desired. O

2.2 The DGA for fronts of knots

Suppose that we are given the front projection Y of an oriented Legendrian knot K. To
define the Chekanov-Eliashberg DGA for Y, we simply examine the DGA for the resolution
of Y and “translate” this in terms of Y. In the interests of readability, we will concentrate on
describing the DGA solely in terms of Y, invoking the resolution only when the translation
is not obvious.

The singularities of Y fall into three categories: crossings (nodes), left cusps, and right
cusps. Ignore the left cusps, and call the crossings and right cusps wertices, with labels
ai,...,an (see Figure 2-3); then the vertices of Y are in one-to-one correspondence with
the crossings of the resolution of Y.

As an algebra, the Chekanov-Eliashberg DGA of the front Y is defined to be the free,
noncommutative algebra with unity A = Z[t,t ']{(a1,... ,a,) over Z[t,t~!] generated by
ai,...,a,. We wish to define a grading on A, and a differential 0 on A which lowers the
grading by 1.

We first address the grading of A. For an oriented path -y contained in the diagram
Y, define ¢(7y) to be the number of cusps traversed upwards, minus the number of cusps
traversed downwards, along . Note that this is the opposite convention from the one used
to calculate rotation number; if we consider Y itself to be an oriented closed curve, then
r(K)=—c(Y)/2.

Let the degree of the indeterminate ¢ be 2r(K). To grade A, it then suffices to define
the degrees of the generators a;; we follow [ENS].

Definition 2.2.1. Given a vertex a;, define the capping path -y;, a path in Y beginning and
ending at a;, as follows. If a; is a crossing, move initially along the segment of higher slope
at a;, in the direction of the orientation of Y'; then follow Y, not changing direction at any
crossing, until a; is reached again. If a; is a right cusp, then ~y; is the empty path, if the
orientation of Y traverses a; upwards, or the entirety of Y in the direction of its orientation,
if the orientation of Y traverses a; downwards.

Definition 2.2.2. If q; is a crossing, then dega; = c(v;). If a; is a right cusp, then dega;
is 1 or 1 — 2r(K), depending on whether the orientation of Y traverses a; upwards or
downwards, respectively.

ag

a7a4

Figure 2-3: The front projection of a figure eight knot, with vertices labelled.
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We thus obtain a grading for A over Z. It will be useful to introduce the sign function
sgnv = (—1)4°8¥ on pure-degree elements of A, including vertices of Y'; note that any right
cusp has negative sign.

Ezample 2.2.3. In the figure eight knot shown in Figure 2-3, a1, a2, as, a4, a7 have degree
1, while a5, ag have degree 0. For an illustration of Definition 2.2.2 for a knot of nonzero
rotation number, see Remark 4.3.1.

Remark 2.2.4. The Thurston-Bennequin number for K can be written as the difference be-
tween the numbers of positive-sign and negative-sign vertices in Y. Since degt = 2r(K),
we conclude that the graded algebra A incorporates both classical Legendrian-isotopy in-
variants.

We next wish to define the differential @ on A. As in [Ch], we define da; for a generator
a; by considering a certain class of immersed disks in the diagram Y.

Definition 2.2.5. An admissible map on Y is an immersion from the two-disk D? to R?
which maps the boundary of D? into the knot projection Y, and which satisfies the following
properties: the map is smooth except possibly at vertices and left cusps; the image of the
map near any singularity looks locally like one of the diagrams in Figure 2-4, excepting the
two forbidden ones; and, in the notation of Figure 2-4, there is precisely one initial vertex.

initial vertices corner vertices

corner vertex

>< >< >_ (Ciwc@
> K-

(downward)

other alowed singularities forbidden singularities

< > < <

Figure 2-4: Possible singularities in an admissible map, and their classification. The shaded
area is the image of the map restricted to a neighborhood of the singularity; the heavy line
indicates the image of the boundary of D?. In two of the diagrams, the heavy line has been
shifted off of itself for clarity. The diagram with heavy shading indicates that the image
overlaps itself. The last two diagrams are forbidden in an admissible map.
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The singularities of an admissible map thus consist of one initial vertex, a number of corner
vertices (possibly including some right cusps counted twice), and some other singularities
which we will ignore. One type of corner vertex, the “downward” corner vertex as labelled
in Figure 2-4, will be important shortly in determining certain signs.

Remark 2.2.6. Forbidden singularities. The possible singularities depicted in Figure 2-4 are
all derived by considering the resolution of Y, but it is not immediately obvious why the two
forbidden singularities should be disallowed. To justify this, call a point p in the domain
of an admissible map, and its image under the map, locally rightmost if p attains a local
maximum for the = coordinate of its image. (More sloppily, a point in the image of the
map is locally rightmost if it locally maximizes = coordinate in the image.) Observe that
any locally rightmost point in the image of an admissible map must be the unique initial
vertex of the map: this point must be a node or a right cusp, which cannot be a negative
corner vertex (cf. Figure 2-4). In particular, there must be a unique locally rightmost point
in the image. Of the two forbidden singularities from Figure 2-4, the left one is disallowed
because the initial vertex is not rightmost, and the right one because there would be two
locally rightmost points.

To each diffeomorphism class of admissible maps on Y, we will now associate a monomial
in Z[t,t"')(a1,... ,a,). Let f be a representative of a diffeomorphism class, and suppose
that f has corner vertices at aj,, ... ,a;,, counted twice where necessary, in counterclockwise
order around the boundary of D?, starting just after the initial vertex, and ending just before
reaching the initial vertex again. Then the monomial associated to f, and by extension to
the diffeomorphism class of f, is

a(f) = (sgn f) t*n(f)aj1 -aj,,

where (sgn f) is the parity (+1 for even, —1 for odd) of the number of downward corner
vertices of f of even degree, and the winding number n(f) is defined below.

The image f(8D?), oriented counterclockwise, lifts to a collection of oriented paths in
the knot K. If a; is the initial vertex of f, then the lift of f(8D?), along with the lifts of
the capping paths v;, —v;,,... , —7j,, form a closed cycle in K. We then set n(f) to be the
winding number of this cycle around K, with respect to the orientation of K.

Definition 2.2.7. Given a generator a;, we define

> alf) if a; is a crossing
O0a; =< 1+ > a(f) if a; is a right cusp oriented upwards
t 1+ aff) if a; is a right cusp oriented downwards,

where the sum is over all diffeomorphism classes of admissible maps f with initial vertex
at a;. We extend the differential to the algebra A by setting 8(Z[t,t~']) = 0 and imposing
the signed Leibniz rule d(vw) = (Ov)w + (sgnv)v(dw).

Remark 2.2.8. Consistency of definitions. The power of ¢ in the definition of the monomial
a(f) has been taken directly from the definition in [ENS] of 9 for the resolution of Y. It
is easy to check that the signs also correspond to the signs in [ENS], after we replace a; by
—a; for each a; which is “right-pointing”; that is, near which the knot is locally oriented
from left to right for both strands.

Remark 2.2.9. Unoriented knots. Definition 2.2.7 depends on a choice of orientation of the
knot K. For an unoriented knot, we may similarly define the differential without the powers
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of t; the DGA is then an algebra over Z graded over Z/(2r(K)), still a lifting of Chekanov’s
original DGA over Z/2.

Remark 2.2.10. Stabilizations. If K is a stabilization, then it is easy to see that there is an
a; such that fa; = 1 or Oa; = t~!. In this case, 0(aj — a;0a;) = 0 or O(a; — ta;0a;) = 0 for
all j, and the DGA collapses modulo tame isomorphisms (see Section 2.4). This was first
noted in [Ch, §11.2].

Ezample 2.2.11. We may compute (somewhat laboriously) that the front in Figure 2-3
satisfies

da1 = 1+ ag — tlagasagar — t2(1 — tagas)azasar + tagaz(l — tag — t2a7a4a6)a7
8&2 = 1- ta5a6
Oag = 71— ag — tagaray

Oay = Oas = 0ag = 0ar =0.

See Figure 2-5 for a depiction of two of the admissible maps counted in da;.

To illustrate the calculation of the sign and power of ¢ associated to an admissible map,
consider the term t2agasazagar in da; above. The sign of this term is (— sgnas)(— sgnag) =
+1; see Example 2.2.3. To calculate the power of ¢, we count, with orientation, the number
of times the cycle corresponding to this map passes through a;. The boundary of the

as

a7a4

Figure 2-5: The admissible maps corresponding to the terms ag (top) and t3agasazagar
(bottom) in da; for the front from Figure 2-3. The heavy lines indicate the image of the
boundary of D?; the heavy shading indicates where the images overlap themselves. For
clarity, the images of the maps are redrawn to the right.
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immersed disk passes through aj, contributing 1; «; trivially does not pass through ay,
contributing 0; and —+3, —y¢, —7y7 pass through a;, while —y5 does not, contributing a total
of —4. It follows that the power of ¢ is t~(110-4) = ¢3,

2.3 Simple fronts

Since the behavior of an admissible map near a right cusp can be complicated, our formu-
lation of the differential algebra may seem no easier to compute than Chekanov’s. There
is, however, one class of fronts for which the differential is particularly easy to compute.

Definition 2.3.1. A front is simple if it is smoothly isotopic to a front all of whose right
cusps have the same x coordinate.

Any front can be Legendrian-isotoped to a simple front: “push” all of the right cusps to the
right until they share the same x coordinate. (In the terminology of Figure 1-1, a series of
ITb moves can turn any front into a simple front.)

For a simple front, the boundary of any admissible map must begin at a node or right
cusp (the initial vertex), travel leftwards to a left cusp, and then travel rightwards again to
the initial vertex. Outside of the initial vertex and the left cusp, the boundary can only have
very specific corner vertices: each corner vertex must be a crossing, and, in a neighborhood
of each of these nodes, the image of the map must only occupy one of the four regions
surrounding the crossing. In particular, the map is an embedding, not just an immersion.

Ezxample 2.3.2. 1t is easy to calculate the differential for the simple-front version of the
figure eight knot given in Figure 2-6:

0a1 = 1+ ag+tayas Oag = t~1 + agar — agag — tagaipas
Oas = 1-—tagayg das = a7+ a1+ tajiasar
daz = t~!—ayg —tapaiias Oag = —tajpar — tajparr — t2apariasar

8a7 = 8a8 = 8a9 = 8a10 = 80,11 =0.

For the signs, note that a1, as, a3, a4, and ag have degree 1, a7 and a;; have degree —1, and
the other vertices have degree 0; for the powers of ¢, note that 3, v4, ¥5, 6, Y7, 710, and
~11 pass through a;, while the other capping paths do not.

Figure 2-6: A simple-front version of the front from Figure 2-3, with two admissible maps
drawn. The top shaded region corresponds to the term tajgas in da;; the bottom shaded
region corresponds to the term —tajpa; in dag.
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2.4 Properties of the DGA

In this section, we summarize the properties of the Chekanov-Eliashberg DGA. These results
were originally proven over Z/2 in [Ch], and then extended over Z[t,t!] in [ENS]. Proofs
are provided, in the front-projection setup, in Appendix A; see also [ENS] for Lagrangian-
projection proofs.

Proposition 2.4.1 ([Ch],[ENS]). Forthe DGA associated to a Legendrian knot, 0 lowers
degree by 1.

Proposition 2.4.2 ([Ch],[ENS]). For the DGA associated to a Legendrian knot, 8% = 0.

To state that the DGA is invariant under Legendrian isotopy, we need to recall several
definitions from [Ch] or [ENS].

An (algebra) automorphism of a graded free algebra Z[t,t '](a1,... ,a,) is elementary
if it preserves grading and sends some a; to a; + v, where v does not involve a;, and
fixes the other generators aj,j # i. A tame automorphism of Z[t,t '|(a1,... ,a,) is any
composition of elementary automorphisms; a tame isomorphism between two free algebras
Zit,t ) a1,... ,a,) and Z[t,t"1](by,... ,b,) is a grading-preserving composition of a tame
automorphism and the map sending a; to b; for all ¢. Two DGAs are then tamely isomorphic
if there is a tame isomorphism between them which maps the differential on one to the
differential on the other.

Let E be a DGA with generators e; and e, such that 0e; = +es, des = 0, both e; and
eo have pure degree, and dege; = deges + 1. Then an algebraic stabilization' of a DGA
(A =7Z[t,t7{a1,... ,a,),0) is a graded coproduct

(S(A4),0) = (4,0) 1 (E,d) = (Z[t,t *){a1,... ,an,e1,e2),0),

with differential and grading induced from A and E. Finally, two DGAs are equivalent if
they are tamely isomorphic after some (possibly different) number of (possibly different)
algebraic stabilizations of each.

We can now state the main invariance result.

Theorem 2.4.3 ([Ch],[ENS]). Fronts corresponding to Legendrian-isotopic knots have
equivalent DGAs.

Corollary 2.4.4 ([Ch],[ENS]). The graded homology of the DGA associated to a Legen-
drian knot is invariant under Legendrian isotopy.

2.5 The DGA for fronts of links

In this section, we describe the modifications of the definition of the Chekanov-Eliashberg
DGA necessary for Legendrian links in standard contact R3. Here the DGA has an infinite
family of gradings, as opposed to one, and is defined over a ring more complicated than
Z[t,t~']. The DGA for links also includes some information not found for knots.

Let L be an oriented Legendrian link, with components Li,...,Lg; in this section,
for ease of notation, we will also use L, L1,...,L; to denote the corresponding fronts.

L This is not related to the stabilizations of Figure 1-2.
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Chekanov’s original definition [Ch] of the DGA for L gives an algebra over Z/2 graded
over Z/(2r(L)), where r(L) = gcd(r(L1),...,7(Lg)); we will extend this to an algebra
over Z[tl,tfl, R t,;l] graded over Z, and our set of gradings will be more refined than
Chekanov’s. We will also discuss an additional structure on the DGA discovered by K.
Michatchev [Mi].

As in Section 2.2, let a,...,a, be the vertices (crossings and right cusps) of L. We
associate to L the algebra

A=TZt,t0 Yt t N an, . an),

with differential and grading to be defined below.

For each crossing a;, let Ny (a;) and N;(a;) denote neighborhoods of a; on the two strands
intersecting at a;, so that the slope of N;(a;) is greater than the slope of N, (a;); then Ny (a;)
is lower than Nj(a;) in y coordinate, since the y axis points into the page. If a; is a right
cusp, define Ny (a;) = N;(a;) to be a neighborhood of a; in L. For any vertex a;, we may
then define two numbers u(a;) and I(a;), the indices of the link components containing
Ny (a;) and Ni(a;), respectively.

For each j = 1,... ,k, fix a base point p; on L;, away from the singularities of L, so
that L; is oriented from left to right in a neighborhood of p;. To a crossing a;, we associate
two capping paths v}* and %l: 7;* is the path beginning at py(4;) and following L, (q4,) in the
direction of its orientation until a; is reached through Ny(a;); 7! is the analogous path in
Ly(q;) beginning at p;,,) and ending at a; through N;(a;). (If u(a;) = I(a;), then one of ~}*
and fyf will contain the other.) Note that, by this definition, when a; is a right cusp, 7;* and
fyf are both the path beginning at py(4;) = Pi(q;) and ending at a;.

Definition 2.5.1. For (p1,...,pr—1) € ZF!, we may define a Z grading on A by
{1 if a; is a right cusp
dega; =

c(v*) — (o) + 2pu(a;) — 2P1(a;) if @i is a crossing,
where we set pr, = 0. We will only consider gradings on A obtained in this way.

The set of gradings on A is then indexed by Z¥~!. Our motivation for including precisely
this set of gradings is given by the following easily proven observation.

Lemma 2.5.2. The collection of possible gradings on A is independent of the choices of
the points p;.

Remark 2.5.3. Signs. We may define the sign function on vertices, as usual, by sgna; =
(—1)9¢8%  This is well-defined and independent of the choice of grading: sgna; = —1 if a;
is a right cusp; sgna; = 1 if a; is a crossing with both strands pointed in the same direction
(either both to the left or both to the right); and sgna; = —1 if a; is a crossing with strands
pointed in opposite directions. Note that tb(L) = > 7 | sgna;.

Remark 2.5.4. If a; is contained in component L;, the degree of a; may differ from how
we defined it in Definition 2.2.2 with L; a knot by itself. It is easy to calculate that the
difference between the two degrees will always be either 0 or 2r(L;).

The differential of a generator a; is still given by Definition 2.2.7, but we must now
redefine a(f) for an admissible map f. Suppose that f has initial vertex a; and corner
vertices a;,,...,a;,. Then the lift of f(0D?) to L, together with the lifts of ¥, —1,
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S R St 10 'yfl, . ,fyfm, form a closed cycle in L. Let the winding number of this cycle
around component L; be n;(f). Also, define sgn f, as before, to be the parity of the number
of downward corner vertices of f with positive sign.
We now set
a(f) = (gn )"V 6" Vag, - ay,,
The differential 0 can then be defined on A essentially as in Definition 2.2.7, except that
we now have 8(Z[t1,tf1, e ,tk,tgl]) =0, and

5 > alf) if a; is a crossing
1+ > a(f) ifa;is a right cusp.

Note that the signed Leibniz rule does not depend on the choice of base points p;, since, by
Remark 2.5.3, the signs (sgna;) are independent of this choice. Also, because of a different
choice of capping paths, we always add 1 to a right cusp, rather than adding either 1 or
t~! as in Definition 2.2.7.

Remark 2.5.5. There is a simple way to calculate n;(f): it is the signed number of times
f(0D?) crosses pj. Indeed, the winding number of the appropriate cycle around L; is the
signed number of times that it crosses a point on L; just to the left of p;. No capping
path ¥ or 7%, however, crosses this point. Hence n;(f) counts the number of times f(9D?)
crosses a point just to the left of p;; we could just as well consider p; instead of this point.

We next examine the effect of changing the base points p; on the differential 0. Consider
another set of base points p;, giving rise to capping paths ¥}, f%, and let £; be the oriented
path in L; from p/; to p;. Then

AE = €u(ai)7 Nu(a't) - gu(ai)
’ ’ gu(ai) - Lu(a,—)a Nu(a’l) s éu(ai)a
and similarly for '?f — 7£ . We conclude the following result.

Lemma 2.5.6. The differential on A, calculated with base points p;, is related to the dif-
ferential calculated with p;, by intertwining with the following automorphism on A:

ai, Ny(ai) C &ua;) and Ni(ai) C &yay)
. tf(ii)ai, Nu(a;) C €u(ay) and Ni(a;) € &y(ay)
tu(a;) @iy Ny(ai) ¢ &ua;) and Ni(ai) C &ya;)
t (ai)tf(,ii)ai, Nu(a;) € Euas) and Ni(a;) € &i(a,)-

Ezample 2.5.7. Consider the link L in Figure 2-7, with base points as shown. To give a
grading to the DGA on L, choose (p1, p2) € Z*. We calculate the degree of a4 as an example:
u(as) = 2, l(as) = 1, c(v}) = 0, and c(74) = —1, and so degas = 1 + 2p2 — 2p1. The full
list of degrees is as follows:

26



Figure 2-7: An oriented link L with components Ly, Lo, and L3, with corresponding base
points p1, p2, and ps marked but not labelled.

dega; =1 degas =1+ 2p3 — 2p1 degar = -1+ 2p;
degas =1 degas =1 —2p degag = —1+2p; —2p2
degas =1 degag =1—2p; degag = —1 + 2po.

The differential d is then given by

Oa1 =1+t + t1t2_1aga4 + tltglamg Oay = tgt?:lagag Oar = agag
Oas =1+ to + tztglagag, + aqasg Oas = agag Oag =0
Oaz = 1 + t3 + asag + agay Oag =0 Oag = 0.

We can now state several properties of the link DGA, the analogues of the results for
knots in Section 2.4.

Proposition 2.5.8. If (4,0) is a DGA associated to the link L, then 82 = 0, and 0 lowers
degree by 1 for any of the gradings of A.

The main invariance result requires a slight tweaking of the definitions. Define elemen-
tary and tame automorphisms as in Section 2.4; now, however, let a tame isomorphism
between algebras generated by aj,...,a, and by,...,b, be a grading-preserving composi-

tion of a tame automorphism and a map sending a; to (an:l tor ’"‘) b;, for any set of integers

{Vk,m}. (This definition is motivated by Lemma 2.5.6.) Define algebraic stabilization and
equivalence as before.

Proposition 2.5.9. If L and L' are Legendrian-isotopic oriented links, then for any grad-
ing of the DGA for L, there is a grading of the DGA for L' so that the two DGAs are
equivalent.

The proofs of Propositions 2.5.8 and 2.5.9 will be omitted here, as they are simply variants
on the proofs of Propositions 2.4.1 and 2.4.2 and Theorem 2.4.3, given in Appendix A; see
also [Ch].

Remark 2.5.10. Allowed gradings. Our set of gradings for A is more restrictive than the set
of “admissible gradings” postulated in [Ch]. To see this, we first translate our criteria for
gradings to the Lagrangian-projection picture, and then compare with Chekanov’s original
criteria.
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Consider a Legendrian link L with components Ly, ... , L;. By perturbing L slightly, we
may assume that the crossings of 7,y (L) are orthogonal, where 7., is the projection map
(z,y,2) — (z,y); as usual, label these crossings a1, ... ,a,. Choose neighborhoods N, (a;)
and N;(a;) in L of the two points mapping to a; under 7.y, so that Ny(a;) lies above N;(a;)
in z coordinate, and let u(a;) and I(a;) be the indices of the link components on which these
neighborhoods lie.

For each j, choose a point p; on L;, and let 6; be an angle, measured counterclockwise,
from the positive z axis to the oriented tangent to L; at p;; note that 6; is only well-defined
up to multiples of 27. Let 7,(a;) be the counterclockwise rotation number (the number of
revolutions made) for the path in W(Lu(ai)) beginning at p,(,,) and following the orientation
of Ly(q;) until a; is reached via Ny(a;); similarly define r;(a;). Then the gradings for the
DGA of L are given by choosing (p1,...,pr—1) € Z*~! and setting

dega; = 2(ri(a;) — 7u(ai)) + (Oyai) — Ou(as)) /™ + 2Pu(as) — 2P1(a;) — 1/2-

By comparison, the allowed degrees in [Ch] are given by

dega; = 2(ri(as) — ru(ai)) + (O1a;) = Ou(as)) /™ + Pu(as) — Pi(a;) — 1/2.

The difference arises from the fact that Chekanov never uses the orientations of the link
components; this forces 6;(,,) and 6,(4,) to be well-defined only up to integer multiples of m,
rather than 27.

We now discuss an additional structure on the DGA for a link L, inspired by [Mi]. More
precisely, we will describe a variant of the relative homotopy splitting from [Mi]; our variant
will split something which is essentially a submodule of the DGA into k? pieces which are
invariant under Legendrian isotopy.

Definition 2.5.11. For j; # jo between 1 and k, inclusive, define I';,;, to be the module
over Zlt1,t;*,. .. ,tk,tlzl] generated by words of the form a;, ---a;,, with u(a;;) = ji,
I(ai,,) = j2, and u(as,,,) = l(a;,) for 1 <p <m —1. If j1 = jo = j, then let T'; ;, be the
module generated by such words, along with an indeterminate e;. Finally, let I' = ®I';, ,.

The indeterminates e; will replace the 1 terms in the definition of 9; see below. Note that
a; € Lu(a;)i(ay)-

Although I' itself is not an algebra, we have the usual multiplication map I'j, j, X I'j,;; —
I, js, given on generators by concatenation, once we stipulate that the e;’s act as the
identity.

Our introduction of I' is motivated by the fact that Ja; is essentially in I';(g,)(q,) for all
i. Define 0'a; as follows: if u(a;) # l(a;), then 8'a; = a;; if u(a;) = l(a;), then &a; is da;,
except that we replace any 1 or 2 term in Ja; by ey(q;) OT 2ey(4,). (It is easy to see that

these are the only possible terms in da; which involve only the ¢;’s and no an,’s.)
Lemma 2.5.12. 9'a; € T'y(q;)i(a;) for all i.

Proof. For a term in Oa; of the form ay, ...a; , where we exclude powers of ¢;’s, we wish
to prove that u(a;) = u(a:), I(a;,) = l(a;), and u(a;,,,) = l(a;,) for all p. Consider
the boundary of the map which gives the term a;, ...a;,. By definition, the portion of
this boundary connecting a;, to a;,,, belongs to link component I(a;,) on one hand, and
u(a;,,,) on the other. We similarly find that u(a;,) = u(a;) and I(a;,) = l(a;). O
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Definition 2.5.13. The differential link module of L is (T, 3"), where we have defined &’a;
above, and we extend 0’ to I" by applying the signed Leibniz rule and setting 8'e; = 0 for
all j. A grading for I is one inherited from the DGA of L, with dege; = 0 for all j.

We may define (grading-preserving) elementary and tame automorphisms and tame
isomorphisms for differential link modules as for DGAs, with the additional stipulation that
all maps must preserve the link module structure by preserving I';, ;, for all ji, j2. Similarly,
we may define an algebraic stabilization of a differential link module, with the additional
stipulation that the two added generators both belong to the same I';, ;,. As usual, we then
define two differential link modules to be equivalent if they are tamely isomorphic after
some number of algebraic stabilizations. We omit the proof of the following result, which
again is simply a variant on the proofs given in Appendix A.

Proposition 2.5.14. If L and L' are Legendrian-isotopic oriented links, then for any grad-
ing of the differential link module for L, there is a grading of the differential link module
for L' so that the two are equivalent.

In this dissertation, we will not use the full strength of the differential link module. We
will, however, apply first-order Poincaré-Chekanov polynomials derived from the differential
link module; we now describe these polynomials, first mentioned in [Mi]. For the definition
of augmentations for knots, and background on Poincaré-Chekanov polynomials, please refer
to Section 3.2.

Assume that 7(L1) = --- = (L) = 0, and let I be the differential link module for L,
with some fixed grading. We consider the DGAs for L and Ly,... , Ly over Z/2; that is, set
t; = 1 for all j, and reduce modulo 2.

Definition 2.5.15. Suppose that, when considered alone as a knot, the DGA for each of
Lq,...,L; has an augmentation €1,... ,€;. Extend these augmentations to all vertices a;
of L by setting

0 otherwise.

£(a:) = {8“(‘“’(‘”) it u(@) = I(a)

We define an augmentation of L to be any function ¢ obtained in this way.

An augmentation €, as usual, gives rise to a first-order Poincaré-Chekanov polynomial
P*'()\); we may say, a bit imprecisely, that this polynomial splits into k? polynomials
Pjsl’]l.2 (A), corresponding to the pieces in T’ ;,.

The polynomials Pjajfl(/\) are precisely the polynomials P>!()) for each individual link
component L;. For practical purposes, we can define P;l’]l-z (M) for j1 # ja as follows. For
a; € I'j,j,, define aél)a,- to be the image of Ja; under the following operation: discard all
terms in da; containing more than one a,, with u(am) # l(an), and replace each a, in da;

by e(am,) whenever u(an,) = l(an,). If we write Vj, ;, as the vector space over Z/2 generated
2

by {a; € I'j,j,}, then oY) preserves Vj, j, and (8§1)> = 0. We may then set P]?I’Jl.z()\) to be

the Poincaré polynomial of 851) on Vj j,, i.e., the polynomial in A whose X¢ coefficient is the

dimension of the i-th graded piece of (ker aél)) /(im 6§1)).

We may also define higher-order Poincaré-Chekanov polynomials P;I’Z (M) by examining
the action of &’ on I'j,j,, but we will not need these here.
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The following result, which follows directly from Proposition 2.5.14 and Chekanov’s
corresponding result from [Ch], will be used extensively in Chapter 4.

Theorem 2.5.16. Suppose that L and L' are Legendrian-isotopic oriented links. Then, for
any given grading and augmentation of the DGA for L, there is a grading and augmentation
of the DGA for L' so that the first-order Poincaré-Chekanov polynomials Pl for L and

f o J1J2
L' are equal for all j1, ja.

Remark 2.5.17. While P;J?l(—l) = tb(L;) as usual, we also have Pjsl’]l.z(—l)1 = 1k(Lj,, Lj,),
the linking number of Lj, and Lj,, for j1 # ja. Also, we have 7. . Pjsl’h(—l) = tb(L).
We conclude that the first-order Poincaré-Chekanov polynomials incorporate the classical

invariants for oriented links (see Section 1.2.

Ezample 2.5.18. For the link from Example 2.5.7, an augmentation is any map with (a;) =

0 for ¢ > 4. Then aél) is identically zero, and the first-order Poincaré-Chekanov polynomials
simply measure the degrees of the a;. More precisely, for a choice of grading (p1, p2) € 72,

we have
PSH(A) = A 12202 PSI (N = A P§2’1()\) _ 3\l 2
P1€3’1(A) = )\*1+2P1 stél()\) — A71+2p2 P?io;l(A) -\

Remark 2.5.19. Unoriented links. For unoriented links, we simply expand the set of allowed
gradings (p1,...,pk_1) to allow half-integers, as in [Ch]. Indeed, a grading of half-integers
(p1,.-. ,pr—1) corresponds to changing the original orientation of L by either reversing the
orientation of {L; : 2p; odd}, or reversing the orientations of Ly and {L; : 2p; even}. We
may deduce this by examining how the capping paths and degrees change when we change
the orientation (and hence base point) of one link component L;.
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Chapter 3

The characteristic algebra

We would like to use the Chekanov-Eliashberg DGA to distinguish between Legendrian iso-
topy classes of knots. Unfortunately, it is often hard to tell when two DGAs are equivalent.
In particular, the homology of a DGA is generally infinite-dimensional and difficult to grasp;
this prevents us from applying Corollary 2.4.4 directly.

Until now, the only known “computable” Legendrian invariants—that is, nonclassical
invariants which can be used in practice to distinguish between Legendrian isotopy classes of
knots—were the first-order Poincaré-Chekanov polynomial and its higher-order analogues.
However, the Poincaré-Chekanov polynomial is not defined for all Legendrian knots, nor is
it necessarily uniquely defined; in addition, as we shall see, there are many nonisotopic knots
with the same polynomial. The higher-order polynomials, on the other hand, are difficult
to compute, and have not yet been successfully used to distinguish Legendrian knots.

In Section 3.1, we introduce the characteristic algebra, a Legendrian invariant derived
from the DGA, which is nontrivial for most, if not all, Legendrian knots with maximal
Thurston-Bennequin number. The characteristic algebra encodes the information from at
least the first- and second-order Poincaré-Chekanov polynomials, as we explain in Sec-
tion 3.2. We will demonstrate the efficacy of our invariant, through examples, in Chapter 4.

Although the results of this chapter hold for links as well, we will confine our attention
to knots for simplicity, except in Remark 3.1.5.

3.1 Definition of the characteristic algebra

The definition of our new invariant is quite simple.

Definition 3.1.1. Let (4, d) be a DGA over Z[t,t 1], where A = Z[t,t '](a1,... ,a,), and
let I denote the (two-sided) ideal in A generated by {Ja; |1 < ¢ < n}. The characteristic
algebra C(A, 0) is defined to be the algebra A/I, with grading induced from the grading on
A.

Definition 3.1.2. Two characteristic algebras A;/I; and Aa/I> are tamely isomorphic if
we can add some number of generators to A; and the same generators to I, and similarly
for Ay and I», so that there is a tame isomorphism between A; and As sending I to Is.

In particular, tamely isomorphic characteristic algebras are isomorphic as algebras. Strictly
speaking, Definition 3.1.2 only makes sense if we interpret the characteristic algebra as a
pair (A, ) rather than as A/I, but we will be sloppy with our notation. Recall that we
defined tame isomorphism between free algebras in Section 2.4.
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A stabilization of (4, d), as defined in Section 2.4, adds two generators ej,e2 to A and
one generator ez to I; thus A/I changes by adding one generator e; and no relations.

Definition 3.1.3. Two characteristic algebras A;/I; and Ay/I, are equivalent if they are
tamely isomorphic, after adding a (possibly different) finite number of generators (but no
additional relations) to each.

Theorem 3.1.4. Legendrian-isotopic knots have equivalent characteristic algebras.

Proof. Let (A,0) be a DGA with A = Z[t,t"']{a1,... ,a,). Consider an elementary auto-
morphism of A sending a; to a; + v, where v does not involve a;; since d(a; + v) is in I,
it is easy to see that this automorphism descends to a map on characteristic algebras. We
conclude that tamely isomorphic DGAs have tamely isomorphic characteristic algebras. On
the other hand, equivalence of characteristic algebras is defined precisely to be preserved
under stabilization of DGAs. O

Remark 3.1.5. Characteristic module for links. In the case of a link, we may also define
the characteristic module arising from the differential link module (T',9’) introduced in
Section 2.5. This is the module over Z[tl,tl_l,... ,tk,tgl] generated by I', modulo the
relations

vl(a'ai)vg =0:v € ij,ai S Fj2j3,1)2 S Fj3j4 for some jl,jz,j3,j4.

Define equivalence of characteristic modules similarly to equivalence of characteristic alge-

bras, except that replacing a generator a; by tj(la_)ai or tlla,)ai is allowed. Then Legendrian-

isotopic links have equivalent characteristic modules. An approach along these lines is used
in [Mi] to distinguish between particular links.

3.2 Relation to the Poincaré-Chekanov polynomial invari-
ants

In this section, we work over Z/2 rather than over Z[t,t !]; simply set t = 1 and reduce
modulo 2. Thus we consider the DGA (A4, 0) of a Legendrian knot K over Z/2, graded over
Z/(2r(K)); let C = A/I be its characteristic algebra.

We first review the definition of the Poincaré-Chekanov polynomials. The following
term is taken from [EFM].

Definition 3.2.1. Let (A4,0) be a DGA over Z/2. An algebra map ¢ : A — Z/2 is an
augmentation if €(1) = 1, e 0 @ = 0, and € vanishes for any element in A of nonzero degree.

Given an augmentation ¢ of (A4,d), write A, = kere; then 0 maps (A:)" into itself
for all n, and thus § descends to a map 9™ : A /A1 — A_/AP*1. We can break

Ag /A" into graded pieces Yiez /(2r(K)) Ci(n), where Ci(n) denotes the piece of degree i.
Write az(n) = dimgp ker(0(™ : Ci(n) — C’z(f)l) and ﬂi(n) = dimgy im(0(™ : C’,L(Z)l — C’i(n)), SO
that aE") — B-(") is the dimension of the i-th graded piece of the homology of 8(™).

(2

Definition 3.2.2. The Poincaré-Chekanov polynomial of order n associated to an augmen-

tation € of (4,0) is Pen(X) = X icz/2r(k)) (agn) — ﬂi(")) AL
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Note that augmentations of a DGA do not always exist.

The main result of this section states that we can recover some Poincaré-Chekanov
polynomials from the characteristic algebra. To do this, we need one additional bit of
information, besides the characteristic algebra.

Definition 3.2.3. Let «y; be the number of generators of degree ¢ of a DGA (A4, ) graded
over Z/(2r(K)). Then the degree distributiony : Z/(2r(K)) — Z>o of A is the map i — ;.

Clearly, the degree distribution can be immediately computed from a diagram of K by
calculating the degrees of the vertices of K.

We are now ready for the main result of this section. Note that the following proposition
uses the isomorphism class, not the equivalence class, of the characteristic algebra.

Proposition 3.2.4. The set of first- and second-order Poincaré-Chekanov polynomials for
all possible augmentations of a DGA (A, ) is determined by the isomorphism class of the
characteristic algebra C and the degree distribution of A.

Before we can prove Proposition 3.2.4, we need to establish a few ancillary results.
Our starting point is the observation that there is a one-to-one correspondence between
augmentations and maximal ideals (a1 + ¢1,... ,a, + ¢,) C A containing I and satisfying
¢ =0 if dega; # 0.

Fix an augmentation €. We first assume for convenience that € = 0; then I C M, where
M is the maximal ideal (ay,... ,a,). For each i, write

O0a; = 01a; + O2a; + O03a;,

where 01a; is linear in the a;, d2a; is quadratic in the a;, and dsza; contains terms of third
or higher order. The following lemma writes 0 in a standard form.

Lemma 3.2.5. After a tame automorphism, we can relabel the a; as ay,... ,a,b1,...,bg,
Cl,--- ,Cn_ok for some k, so that 01a; = b; and 01b; = O1¢; = 0 for all 1.

Proof. For clarity, we first relabel the a; as a;. We may assume that the a; are ordered so
that 0a; contains only terms involving a;, j < i; see [Ch]. Let i; be the smallest number
so that 01d;, # 0. We can write 014;, = a;, + v1, where j; < 41 and the expression v; does
not involve a;,. After applying the elementary isomorphism a;, — a;, +v1, we may assume
that V1 = 0 and 81&i1 = &jl.

For any a; such that 0,a; involves a;,, replace a; by a; +a;,. Then 01a; does not involve
a@j, unless ¢ = 71; in addition, no 0:a; can involve a;, , since then 812("zi would involve a;,. Set
a1 = a;, and by = a;,; then 01a1 = by and 01a; does not involve a; or by for any other 3.

Repeat this process with the next smallest a;, with 01a;, # 0, and so forth. At the

conclusion of this inductive process, we obtain ai,...,ag,b1,...,br with 01a; = b; (and
O1b; = 0), and the remaining a; satisfy 01a; = 0; relabel these remaining generators with
c’s. O

Now assume that we have relabelled the generators of A in accordance with Lemma 3.2.5.

Lemma 3.2.6. ﬁlgl) is the number of b; of degree £, while ﬁl@ — Blgl) is the dimension of
the degree £ subspace of the vector space generated by

{02b;, O2ci, a;bj + biaj, bibj, bicj, cibj},

where i,j range over all possible indices.
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Proof. The statement for ﬁgl) is obvious. To calculate ﬁl@ — ,B,gl), note that the image of
9?2 in A/A3 is generated by 8a; = b; + 9aa;, Ob; = O2b;, Oc; = aci, 0(aiaj) = a;b; + biaj,
0(aib;) = b;bj, 0(biaj) = b;bj, O(aicj) = bicj, and 0(c;a;) = c;b;. O

We wish to write ﬂ£n) in terms of C, but we first pass through an intermediate step. Let
N™ be the image of I in M/M"t1, and let 6§n) be the dimension of the degree £ part of
N™ . Lemma 3.2.8 below relates Bén) to 5§n) forn=1,2.

Lemma 3.2.7. (5?) is the number of b; of degree £, while 5§2) — 5§1) is the dimension of the
degree £ subspace of the vector space generated by

{02bi, 02ci, a;bj, biaj, bibj, bicj, c;bj},
where 1, j range over all possible indices.

Proof. This follows immediately from the fact that I is generated by {da;, 9b;, dc; }. O
Lemma 3.2.8. ") = 6{" and %) = 6*) — T, 6460 1.

Proof. We use Lemmas 3.2.6 and 3.2.7. The first equality is obvious. For the second
equality, we claim that, for fixed ¢ and j, a;b; only appears in conjunction with b;a; in the

expressions O2b,, and Oacy,, for arbitrary m. It then follows that 5152) — ,6’152) is the number
of a;b; of degree ¢, which is ), 6¢d_p—1-

To prove the claim, suppose that O2b,, contains a term a;b;. Since 02b,, = 0 and
02(a;bj) = b;bj, there must be another term in Ooby,, which, when we apply 02, gives b;b;;
but this term can only be b;a;. The same argument obviously holds for dacy,. U

Now let € be any augmentation, and let M. = (a1 + £(a1),-..,an + €(ay)) be the

corresponding maximal ideal in A. If we define N and 5§n as above, except with M
replaced by M,, then Lemma 3.2.8 still holds. We are now ready to prove Proposition 3.2.4.

Proof of Proposition 3.2.4. Note that
(Mo /MZY)/N®) = (M, /1) /(M /T)"

the characteristic algebra C = A/I and the choice of augmentation ¢ determine the right
hand side. On the other hand, the dimension of the degree £ part of M./MZ ! is v, if
n=1,and v+ >, Yeve—e if n = 2. It follows that we can calculate {5§1)} and {6§2)} from
C, €, and 7.

Fix n = 1,2. By Lemma 3.2.8, we can then calculate {@S")} and hence the Poincaré-
Chekanov polynomial

PN =Y ((agn> +8M) — B - B,_E’j)l) .
L

Letting € vary over all possible augmentations yields the proposition. O

Remark 3.2.9. Another set of invariants, similar to the Poincaré-Chekanov polynomials, are
obtained by ignoring the grading of the DGA, and considering ungraded augmentations.
In this case, the invariants are a set of integers, rather than polynomials, in each order. A
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proof similar to the one above shows that the first- and second-order ungraded invariants
are determined by the characteristic algebra.

Remark 3.2.10. The situation for higher-order Poincaré-Chekanov polynomials seems more
difficult; we tentatively make the following conjecture.

Conjecture 3.2.11. The isomorphism class of C and the degree distribution of A determine
the Poincaré-Chekanov polynomials in all orders.

Remark 3.2.12. In practice, we apply Proposition 3.2.4 as follows. Given two DGAs, stabi-
lize each with the appropriate number and degrees of stabilizations so that the two resulting
DGASs have the same degree distribution. If these new DGAs have isomorphic characteristic
algebras, then they have the same first- and second-order Poincaré-Chekanov polynomials
(if augmentations exist). If not, then we can often see that their characteristic algebras
are not equivalent, and so the original DGAs are not equivalent. Thus calculating char-
acteristic algebras often obviates the need to calculate first- and second-order Poincaré-
Chekanov polynomials.

Remark 3.2.13. Abelianized characteristic algebras. Note that the first-order Poincaré-
Chekanov polynomials depends only on the abelianization of (A,0). If the procedure
described in Remark 3.2.12 yields two characteristic algebras whose abelianizations are
isomorphic, then the original DGAs have the same first-order Poincaré-Chekanov polyno-
mials.

On a related note, empirical evidence leads us to propose the following conjecture, which
would yield a new topological knot invariant.

Conjecture 3.2.14. For a Legendrian knot K with mazimal Thurston-Bennequin num-
ber, the equivalence class of the abelianized characteristic algebra of K, considered without
grading and over Z, depends only on the topological class of K.

Here the abelianization is unsigned: vw = wv for all v, w.

Remark 3.2.15. Scheme interpretation. We can view the abelianization of C in terms of
algebraic geometry. If C = (Z/2)(a1,... ,an) / I, then the abelianization of C gives rise to a
scheme X in A™, affine n-space over Z/2. Theorem 3.1.4 immediately implies the following
result.

Corollary 3.2.16. The scheme X is a Legendrian-isotopy invariant, up to changes of co-
ordinates and additions of extra coordinates (i.e., we can replace X C A™ by X x A C A1),

There is a conjecture about first-order Poincaré-Chekanov polynomials, suggested by
Chekanov, which has a nice interpretation in our scheme picture.

Conjecture 3.2.17 ([Ch]). The first-order Poincaré-Chekanov polynomial is independent
of the augmentation €.

Augmentations are simply the (Z/2)-rational points in X, graded in the sense that all
coordinates corresponding to a; of nonzero degree are zero. It is not hard to see that the
first-order Poincaré-Chekanov polynomial at a (Z/2)-rational point p in X is precisely the
“graded” codimension in A" of T}, X, the tangent space to X at p. The following conjecture,
which we have verified in many examples, would imply Conjecture 3.2.17.

Conjecture 3.2.18. The scheme X is irreducible and smooth at each (7,/2)-rational point.
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Chapter 4

Applications

In this chapter, we give several illustrations of the constructions and results from Chap-
ters 2 and 3, especially Theorems 2.5.16 and 3.1.4. The first four examples, all knots,
both illustrate the computation of the characteristic algebra described in Section 3.1, and
demonstrate its usefulness in distinguishing between Legendrian knots. The last three, all
multi-component links, apply the techniques of Section 2.5 to conclude some results about
Legendrian links.

Instead of using the full DGA over Z[t,t~!] or Z[tl,tfl, e ,tk,tlzl], we will work over
Z,/2 by setting t = 1 and reducing modulo 2. We hope soon to have applications of the full
algebra.

4.1 Example 1: 6.

Our first example revisits the argument of [Ngl], which showed that there exist knots not
Legendrian isotopic to their Legendrian mirrors. Let K be the unoriented Legendrian knot
given in Figure 4-1, which is of knot type 62, with » = 0 and ¢tb = —7. Here we will use the
characteristic algebra to give a proof which is essentially identical to the one in [Ngl], but
slightly cleaner.

With vertices labelled as in Figure 4-1, the differential on the DGA (A4, 9) for K is given
by A= Z<a1, e ,ag,bl,b2> and

0a; = 1+ agasb; Oas = agag
Oay = 1+ bl(l + asag + a9a4) das = agag
Obs = ag+ (1 + asag + aga4)a3 Oa7 = 1+ agag

8(13 = 8(16 = 8(18 = 8(19 = 8()1 =0.

Figure 4-1: Front projection for the Legendrian knot K, of type 62, with vertices labelled.
The use of a; and b; to label the vertices is not related to the a; and b; from Lemma 3.2.5;
we use a and b to denote vertices of odd and even degree, respectively.
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The ideal I is generated by the above expressions. More precisely, I = (f1, f2, f3, f4, f5, f6),
where

fi = 1+ agasb fa = aeas
fo = 1+ bl(l + asag + aga4) fs = agag
f3 = a9+ (1+asas+ agas)as fe = 1+ agay.

The characteristic algebra of K is then given by C = A/I.

The grading on A and C is given as follows: a1, a2, a4, a7, and ag have degree 1; by, by
have degree 0; and a3, as, ag, ag have degree —1.

Note that the characteristic algebra for the Legendrian mirror of K is the same as
C = A/I, but with each term in I reversed.

Lemma 4.1.1. We have

C= (Z/2)<a17 --.,05,07,0as8, b17b2> /
(1+ agagbi, 1+ biagas, 1+ a%a%, 1+ agas + asag + a8a§a4>.

Proof. We perform a series of computations in C = A/I:

as = ag + (1 + agag)ag = ag(agag) = 0;
1 + asag + agas = agazbi (1 + asag + agas) = agas;

2
ag = (1 + asag + agas)az = agaj.

Substituting for ag and ag in the relations f; yields the relations in the statement of the
lemma. Conversely, given the relations in the statement of the lemma, and setting ag = 0
and ag = agag, we can recover the relations f;. O

Decompose C into graded pieces C = @;C;, where C; is the piece of degree i.
Lemma 4.1.2. There do not exist v € C_1,w € C1 such that vw =1 € C.

Proof. Suppose otherwise, and consider the algebra C' obtained from C by setting b; =
1l,a1 = a3 = a4 = a5 = a7y = 0. There is an obvious projection from C to C' which is an
algebra map; under this projection, v,w map to v' € ' ;,w’ € Cf, with v/’ =1 in C'.
But it is easy to see that C' = (Z/2)(a3,as) / (1 + agas), with ag € C’ ; and ag € C], and it
follows that there do not exist such v/, w’. O

Proposition 4.1.3. K is not Legendrian isotopic to its Legendrian mirror.

Proof. Let C be the characteristic algebra of the Legendrian mirror of K. Since the relations
in C are precisely the relations in C reversed, Lemma 4.1.2 implies that there do not exist
v € C,w € C_1 such that vw = 1. On the other hand, there certainly do exist v € C1,w €
C_ such that vw = 1; for instance, take v = ag and w = —agb;. Hence C and C are not
isomorphic. This argument still holds if some number of generators is added to C and C,
and so C and C are not equivalent. The result follows from Theorem 3.1.4. O

Remark 4.1.4. More generally, the characteristic algebra technique seems to be an effective
way to distinguish between some knots and their Legendrian mirrors; see Remark 4.2.5 for
another example. Note that Poincaré-Chekanov polynomials of any order can never tell
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between a knot and its mirror, since, as noted above, the differential for a mirror is the
differential for the knot, with each monomial reversed.

4.2 Example 2: 74

Our second example shows that the characteristic algebra is effective even when Poincaré-
Chekanov polynomials do not exist. In addition, Examples 2, 3, and 4 are the first examples,
known to the author, in which the DGA grading is not needed to distinguish between knots.

Consider the Legendrian knots K;, Ko shown in Figure 4-2; both are of smooth type
74, with = 0 and tb = 1. We will show that K; and K2 are not Legendrian isotopic.
We present this example before the 63 and 79 examples of Sections 4.3 and 4.4 because the
algebra is a bit simpler in this case.

The differential on the DGA for K; is given by

O0ay = 1+ babrby Oas = 1+ brbg

Oaz = 1+ b1b7by Oag = 1+ bgby

Bas = br(1 +babs) by — asbaby + brbaaa
Oay = (1 + bsby)by 0bs = brag — asbr;

the differential for K> is given by

O0ai = 1+ (1 + bsbs + baby + bebr + babsbebr + baasaebr)by

Oaz =1+ b1brby

Bas = br(1 + babs)

Oag = bg + by + by + bsbabs + b3babr + b3bgby + bsbeby + bsbabsbeby + asaeby + bsbsasagar
Oag = 1 + brbg

Figure 4-2: The fronts for the Legendrian knots K; and Ko, of type 74, with vertices
labelled.
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0by = brbsas + agbr + a3(1 + bsbs + babr + bebr + babsbgbr + bsasasbr)
81)5 = a5b7.
Denote the characteristic algebras of K7 and Ky by C; = A/I; and Cy = A/I, respec-

tively; here A = (Z/2){a1,... ,a6,b1,... ,b7), and I; and Iy are generated by the respective
expressions above.

Lemma 4.2.1. We have
C1 = (Z/2){a1,a2,as,as,b1,b2,ba,bs,b7) / (1 + b1babr, bibs + bab1,b1by + brby, baby + brbs).

Proof. In C1, we compute that

b1b4by = b1babrb1brby = b1brby =1
bs = b1bybabs = b1brbbrbabs = b1brbsby = biby
b = b1bybrbg = b1by
ag = bibrbgas = brasbyby

ag = bibsbrag = bibsasbr;
substituting for ag4, ag, b3, bg in the relations for C; gives the result. U

Lemma 4.2.2. There is no expression in C1 which is invertible from one side but not from
the other.

Proof. 1t is clear that the only expressions in C; which are invertible from either side are
products of some number of by, by, and b7, with inverses of the same form. Since by, by, by
all commute, the lemma follows. O

Lemma 4.2.3. In Cy, by is invertible from the right but not from the left.

Proof. Since bybg = 1, by is certainly invertible from the right. Now consider adding to Cs
the relations by = 1, b3 = by, by = bg, bo = b5 = 0, and a; = 0 for all i. A straightforward
computation reveals that the resulting algebra is isomorphic to (Z/2)(bs,b7) / (1 + brbg), in
which b7 is not invertible from the left. We conclude that b7 is not invertible from the left
in Cy either, as desired. O

Proposition 4.2.4. The Legendrian knots K1 and K are not Legendrian isotopic.
Proof. From Lemmas 4.2.2 and 4.2.3, C; and Cy are not equivalent. U

Remark 4.2.5. Although C; and Cy are not equivalent, one may compute that their abelian-
izations are isomorphic. It is also easy to check that K; and K2 have no augmentations,
and hence no Poincaré-Chekanov polynomials.

The computation from the proof of Lemma 4.2.3 also demonstrates that K5 is not Leg-
endrian isotopic to its Legendrian mirror; we may use the same argument as in Section 4.1,
along with the fact that bg and b7 have degrees 2 and —2, respectively, in Co. By contrast,
we see from inspection that K; is the same as its Legendrian mirror.
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Figure 4-3: The oriented Legendrian knots K3 and Ky, of type 63.

4.3 Example 3: 63

This section provides another example of the efficacy of the characteristic algebra when
Poincaré-Chekanov polynomials do not exist. It is also the first example, known to the
author, of two Legendrian knots with nonzero rotation number which have the same classical
invariants but are not Legendrian isotopic. The knots are K3, K4 shown in Figure 4-3; both
are of smooth type 63, with »r = 1 and tb = —4.

We will omit some details in both this section and Section 4.4, since the arguments in
both sections are very similar to the argument from Section 4.2.

Remark 4.3.1. We will not need these for the computation, but for both K; and Ks, b2 has
degree 0, by, bz have degree —2, and a; has degree —1 for all <.

Over 7Z/2, the differential on the DGA for K3 is given by

Oa; =1+ ((1+ bsb2)ay + as(1 + b2bs3))as

Oaz = 1+ azas(1 + bsby)

Oas = 1+ bobs + a5((1 + bgba)ar + ag(1 + babs))
Oag = b1 + b3 + bsbaby

a7 = by + bg + b1babs;

the differential for K is given by
Oa; =1+ a6(1 + bgb2)a3
O0az = 1+ (14 azay)(by + bz + bibebs) + as(as + a7 + asasar)(1 + babs)

Oag = (1 + a5a6)(1 + b3b2)
Oa7 = by + bg + bgbab;.

Denote the characteristic algebras of K3 and K4 by C3 and Cy4, respectively.
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Lemma 4.3.2. We have

C3 = (Z/2)<a17a27a37a4aa6a b27b3>/
<1 + a3(1 + bgbg)a3(1 + b3b2), 14+ (1 + b3b2)a3(1 + b2b3)a3>.

Proof. In C3, we compute that

(1 + byb2)(1 + b3ba) = 1+ (b1 + b3 + bibabg)be = 1
(1 + b3b2)(1 4 bib2) = 1 + ba(by + bs + bzbab1) =1
b1 = asas(1 + bsba)by = azasbs
as = a5((1 4 bzb2)ar + ae(1 + babz))as = (1 + bzbz)as
as(1 + b3ba) = ((1 + b3ba)ar + ag(1 + babs))azas(1 + bgbz) = (1 + bzbz)ar + ag(1 + bab3)
a7 = (14 b1b2)(1 + bsba)ar = (1 + bib2)(as(1 + bsba) + ag(1 + babs));

substituting for as, a7, b; in the relations for Cs gives the result. O

Lemma 4.3.3. There is no expression in C3 which is invertible from one side but not from
the other.

Proof. It follows from the representation for Cs given by Lemma 4.3.2 that the expressions
a3, 14 bobs, and 1+ bsby are all invertible (from both sides). The only invertible expressions
in C3 which are invertible from either side are derived from these, and are hence invertible
from both sides. O

Lemma 4.3.4. In C4, a3 is invertible from the left but not from the right.

Proof. Since ag(1+bsb2)as = 1, a3 is invertible from the left. Now consider adding to C4 the
relations a5 = (bs+1)as, ag = (bs+1)as, by = 1+ag(bs+1)as, by =1,a1 = ag = a4 = a7 = 0.
The resulting algebra is isomorphic to (Z/2)(a3,b3) / (1 + ((b3 + 1)a3)?), in which a3 is not
invertible from the right. O

Proposition 4.3.5. The Legendrian knots K3 and K4 are not Legendrian isotopic.

Remark 4.3.6. The abelianizations of C3 and C4 are isomorphic. Neither K3 nor K4 has a
Poincaré-Chekanov polynomial; it can also be shown that K3 and K4 are each isotopic to
their Legendrian mirrors (with, of course, the reverse orientations).

4.4 Example 4: 7,

Our next example applies the characteristic algebra to a case where the first-order Poincaré-
Chekanov polynomials exist but fail to distinguish between two knots. Let K5 and Kg be
the unoriented Legendrian knots shown in Figure 4-4; both are of smooth type 72, with
r=0and tb = 1.
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Figure 4-4: The Legendrian knots K5 and Kg, of type 7a.

The differential on the DGA for K5 is given by

Oa; =1+ ((1 + b7b6)b5 + b7(1 + a6a5))(1 + b2b1)
Oas =1+ ((bl + bg + b1b2b3)b4 + (1 + b1b2)(1 + a3a4))b7 + (1 + b1b2)a3b7a6
6a4 = (1 + b7b6)(1 + b5b4) + b7(1 + a6a5)b4

Oag = 1 + bgby
0bs = a3(1 + brbg)bs + azbr(1 + agas)
Obs = bras;

the differential for Kg is given by

Oa; =1+ b7(1 + b2b1)
Oas =1+ ((bl + bg + b1b2b3)(1 + b4b5) + (1 + b1b2)(1 + a3a4)b5)(1 + b5b7)

+ (((b1 4 b3 + b1bab3)ba + (1 + b1b2) (1 + aszaq)) (1 4 asae) + (1 + bib2)asag) by
Oay = brby

Oag = 1 + brbg
Obs = agby
Obs = asby.

Denote the characteristic algebras of K5 and Kg by Cs and Cg, respectively.

Lemma 4.4.1. We have

Cs = (Z/2){a1, a2, as, ag,b1,ba, b3, bs,b7) / (1 + (1 + bab1)bz, 1 + b7(1 + bab1), bab1 + b1b2).
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Proof. In C5, we compute that

as = (1 + bgbr)as =0
a3 = ag(bs + by + brbgbs) (1 + bab1) =0
by = by + (1 + bebr)ba = b ((1 + brbe)(1 + bsba) + brbs) = 0
b = (14 b1ba)brbg = 1 + b1by;

substituting for as, as, bg, bg in the relations for Cs gives the result. O

Lemma 4.4.2. There is no expression in Cs which is invertible from one side but not from
the other.

Lemma 4.4.3. In Cg, by is invertible from the right but not from the left.

Proof. Since bybg = 1, by is invertible from the right. Now consider adding to Cg the
relations by =1, by =bg+ 1, bg = by = bs = 0, and a; = 0 for all ¢. The resulting algebra is
isomorphic to to (Z/2)(bs, bz) / (1 + brbs), in which by is not invertible from the left. O

Proposition 4.4.4. The Legendrian knots K5 and Kg are not Legendrian isotopic.

Remark 4.4.5. K5 and Kg have the same abelianized characteristic algebras, as usual, and
the same degree distributions; hence, by Proposition 3.2.4, they have the same first-order
Poincaré-Chekanov polynomial, which we can calculate to be A\ + 2.

4.5 Example 5: triple of the unknot

In this section, we rederive a result of [Mi] by using the link grading from Section 2.5. Our
proof is different from the ones in [Mi].

Definition 4.5.1 ([Mi]). Given a Legendrian knot K, let the n-copy of K be the link
consisting of K, along with n — 1 copies of K slightly perturbed in the transversal direction.
In the front projection, the n-copy is simply n copies of the front of K, differing from each
other by small shifts in the z direction. We will call the 2-copy and 3-copy the double and
triple, respectively.

Let L = (L1, L2, L3) be the unoriented triple of the usual “flying-saucer” unknot; this
is the unoriented version of the link shown in Figure 2-7.

Proposition 4.5.2 ([Mi]). The unoriented links (L1, L2, L3) and (L2, L1, L3) are not Leg-
endrian isotopic.

Proof. In Example 2.5.18, we have already calculated the first-order Poincaré-Chekanov
polynomials for (L, Lg, L3), once we allow the grading (p1, p2) to range in (%Z)2, as stip-

ulated by Remark 2.5.19. The polynomials for the link (Lg, L1, L3) and grading (o1, 02) €
(%2)2 are identical, except with the indices 1 and 2 reversed:

Plgil()‘) =A P;il()\) = )\_1+2‘71_2‘72 Pgsil(k) — )\1—202
Plgél()‘) = )‘1+202_201 P;él()\) =A ng’l()\) — )\1—20’1
PRI =71 PRl = a7 PEI(A) = A
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It is easy to compute that there is no choice of pi, p2, 01,02 for which these polynomials
coincide with the polynomials for (Li, Le, L3) given in Example 2.5.18. The result now
follows from Theorem 2.5.16. O

4.6 Example 6: double of the figure eight knot

In [Mi], it is asked whether there is an unoriented Legendrian knot whose double is not
Legendrian isotopic to the double with components exchanged. We will give an example of
such a knot in this section.

Let L = (L1, L2) be the unoriented double of the figure eight knot, shown in Figure 4-5.
To calculate gradings, we temporarily give L an orientation and base points as marked. We
have labelled the vertices of L so that a; € I'1; for 1 <7 < 7, a; € I'yp for 8 < 7 < 14,
a; €Tp for 15 < < 21, and a; € 'y for 22 <7 < 28.

Proposition 4.6.1. The unoriented links (L1, L2) and (L2,L1) are not Legendrian iso-
topic.

Proof. As usual, we work modulo 2 and ignore powers of ¢; and t3. An easy calculation on
the DGAs for L; and L2 shows that any augmentation € of the DGA for L, as defined in
Section 2.5, must satisfy £(ag) = €(ar) = €(a13) = €(a14) = 1 and €(a4) = €(as) = e(a11) =

Ly

Figure 4-5: The link L, with vertices labelled (the a’s are suppressed). To calculate gradings,
orientations and base points are given.
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g(a12) = 0. With that in mind, we find that

WM agy = apg
0Wayg = a15 + a1 (1)
(1) 65 a3 = a27
0;az1 = a1 + a1r (1)
0;a24 = az7 + azs,

and 8§1)ai = 0 for all other a; € I'13 or a; € I'y;.
Given the orientations and base points from Figure 4-5, we calculate the degrees in I'19
and I'9; to be

)
1+2p;  for ass,

2p1 for aig, az1,

—1+2p; for ays,a1s, a17, azo,

dega; =

1—-2p;  for ag,azs,au,azs,

—2p for a7, azs,

\_1 —2p1 for agg.

It follows that Pfél()\) = A+2r1 4 2\=14201 and Pgil()\) = 2\11201 4 \=14201 We disregard
the orientations of L; and Lg by allowing any p; € %Z.

For the link (L3, L;) and a choice of grading o1 € %Z, we have the same Poincaré-
Chekanov polynomials, except with indices 1 and 2 switched; hence, for (Lg, L1), Pfél()\) =
2\1H201 4 \~14201 Tt is clear that this is never equal to Pfél()\) for (Li, Lg) for any choice
of p1,01. The result follows. O

4.7 Example 7: Whitehead link

In this section, we give an example where orientation is important. Consider the Legendrian
form of the Whitehead link shown in Figure 4-6, with oriented components L1 and L2, and
let —L; denote L; with reversed orientation, as usual. By playing with the diagrams, one
can show that (L1, L2), (L2, —L1), (—L1,—L3), and (—L2, L;) are Legendrian isotopic, as
are (—Lq, L2), (—Lg,—L1), (L1,—Ls), and (—Lg,—Lj). It is also the case that these two
families are smoothly isotopic to each other. We will show, however, that they are not
Legendrian isotopic.

L,
< § %2; Ly
L,
Ly

Figure 4-6: The oriented Whitehead link. On the left, a form which is recognizably the
Whitehead link; on the right, the Legendrian-isotopic form which we will use.
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Figure 4-7: The oriented link (Lj, Ls), with vertices labelled and base points as shown.

Proposition 4.7.1. The oriented links (L1, L2) and (—Lj, L3) are not Legendrian isotopic.

Proof. Refer to Figure 4-7 for vertices and base points. Any map ¢ with e(a;) = 0 for
1 > 3 is an augmentation. The only a; with a; € I'12 are a4 and a7, both of which satisfy
Oa; = 0; their degrees are degas = —1 + 2p; and degay = 2p; for some p; € Z, and so
Pfél()\) — A201 4 \~14201,

On the other hand, if we reverse the orientation of L; (and choose a new base point
p1 on the lower half of L;), then we find degas = 207 and degay = 1 + 207 for some
o1 € Z, and so Pfél()\) = Alt201 4 \291 [t follows that, regardless of the choice of py, o7,
the polynomial P33 (A) will be different for (L1, L2) and (—Li, Ly). 0

Examples 6 and 7 will be applied to knots on the solid torus in Chapter 5.
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Chapter 5

Legendrian satellites

In the smooth category, there is a satellite construction which glues a link in the solid torus
S1xR? into a tubular neighborhood of a knot in R? to produce a link in R3. The motivation
for this chapter is that there is a Legendrian form of this construction which is invariant
under Legendrian isotopy. We can then deduce results about Legendrian solid-torus links
from results about Legendrian R? links, and vice versa. In addition, we hope in the future to
use Legendrian satellites to give nontrivial, nonclassical invariants of stabilized Legendrian
links in R3.

We define the construction in Section 5.1, and show how it immediately implies facts
about solid-torus links, including some that could not be shown using any previously known
techniques. In Section 5.2, we show that the DGAs of some simple Legendrian satellites
of stabilized knots, unfortunately, do not contain any useful information; the key step is
Lemma, 5.2.4, which is proven in Section 5.3. The computation performed in Section 5.3 may
be of interest as the first involved computation known to this author which works directly
on the DGA, rather than manipulating easier invariants such as the Poincaré-Chekanov
polynomials or the characteristic algebra.

5.1 Construction

The solid torus S' x R? inherits a contact structure from R3. View S! x R? as R? modulo
the relation (z,y,2) ~ (z+1,y, z); then the standard contact structure o = dz —y dx on R3
descends to the solid torus. As in R3, Legendrian links in the solid torus may be represented
by their front projections to the xz plane, with the understanding that the x direction is
now periodic. If we view S! x R? as [0, 1] x R? with {0} x R? identified with {1} x R?, then
we can draw the front projection of a solid-torus Legendrian link as a front in [0, 1] x R with
the two boundary components identified. We depict the boundary components by dashed
lines; see Figure 5-1 for an illustration. For a Legendrian link L in the solid torus, let the
endpoints of L be L N ({0} x R?), that is, the points where the front for L intersects the
dashed lines.

Remark 5.1.1. Invariants of solid-torus links. There are three classical invariants of links
on the solid torus: the Thurston-Bennequin number ¢b and rotation number r can be
calculated from the front of a solid-torus link exactly as in R3; and the winding number w
is the number of times the link winds around the S direction of S! x R2. Clearly the tb, r,
and w associated to any subset of the components of a solid-torus link also give invariants
of the link.
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In [NT], L. Traynor and the author show that the Chekanov-Eliashberg DGA can be
defined for links on the solid torus, thus yielding a nonclassical invariant. For certain links
with two components, [Tr] has also defined a nonclassical generating-function invariant. We
will give examples in this section of solid-torus knots which are not Legendrian isotopic,
but which cannot be distinguished using any of these invariants.

We now introduce the Legendrian satellite construction. Let L be an oriented Legendrian
link in R3 with one distinguished component L;, and let L be an oriented Legendrian link
in S1 x R2, We give two definitions of the Legendrian satellite S(L, f/) C R3, one abstract,
one concrete.

A tubular neighborhood of L; is a solid torus; the characteristic foliation on the bound-
ary of this torus wraps around the torus tb(L;) times. By cutting the tubular neighborhood
at a cross-sectional disk, untwisting it tb(L1) times, and regluing, we obtain a solid torus
contactomorphic to S' x R? with the standard contact structure. Thus we can embed
L c 8! x R? as a Legendrian link in a tubular neighborhood of L;. Replacing the compo-
nent L in L by this new link gives S(L, L).

We can redefine S(L, L) in terms of the fronts for L and L; see Figure 5-1 for a pictorial
description. Suppose that L has n endpoints. By cutting along the dotted lines (i.e., the

L,

S
Figure 5-1: Gluing a solid-torus link L into an R? link L, to form the satellite link S(L, L).
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endpoints of 1~}), we can embed L as a Legendrian tangle in R3 with 2n ends. Replace the
front of the first component L; of L by the n-copy of L; (see Definition 4.5.1). Now choose
a small segment of L; which is oriented from left to right; excise the corresponding n pieces
of the n-copy of L1, and replace them by the front for L, cut along its endpoints.

Definition 5.1.2. The resulting link S(L,E) C R3? is the Legendrian satellite of L C R3
and L C S' x R2. We give S(L, L) the orientation derived from the orientations on L (for
the glued n-copy of L) and on L (for the components of L besides Lj).

The Legendrian satellite construction is motivated by the special case of Whitehead

doubles (see Section 5.2), which were introduced by Eliashberg and subsequently used by
Fuchs [Fu].
Remark 5.1.8. Classical invariants of Legendrian satellites. Before we show that S(L, L) is
well-defined up to Legendrian isotopy, we note that the classical invariants of S(L, f/) are
easily computable from those of L and L. Indeed, a straightforward computation with front
diagrams yields

th(S(L, L)) = (w(L))?tb(L) + tb(L)

r(S(L, L)) = w(L)r(L) + (L)

when L is a knot, with a similar but slightly more complicated formula when L is a multi-
component link.

Lemma 5.1.4. S(L, L) is well-defined up to Legendrian isotopy.

Proof. We need to show that, up to Legendrian isotopy, S(L, 1~}) is independent of the piece
of the n-copy of L; which we excise and replace by L, as long as this piece is oriented left
to right. The singularities of L consist of crossings, left cusps, and right cusps; we imagine
pushing these singularities one by one from one section of the n-copy of L; to another.
We can clearly push these singularities through any piece of S(L, f/) which crosses a
neighborhood of L transversely; see the top diagram in Figure 5-2. Figure 5-3 shows that
we can also push singularities through a right cusp in L1, and clearly this argument extends
to left cusps as well. We conclude that we can push all of L through a cusp, resulting in
the left-to-right mirror reflection of L; see the bottom diagrams in Figure 5-2. The lemma
follows. O

Figure 5-2: Pushing L through singularities in L: a crossing, a right cusp, and a left cusp.
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Figure 5-3: Pushing singularities in L through a right cusp.

—F
A X

Figure 5-4: Legendrian Reidemeister moves on m-copies; in this illustration, n = 3.

Theorem 5.1.5. S(L, f/) is a well-defined operation on Legendrian isotopy classes; that is,
if we change L, L by Legendrian isotopies, then S(L, L) changes by a Legendrian isotopy as
well.

Proof. We first consider Legendrian-isotopy changes of L. These fall into two categories:
isotopies where the endpoints of L remain fixed, and horizontal translations of L (i.e.,
moving the dashed lines). The first category clearly preserves the Legendrian isotopy class
of S(L, f/). The second category consists of pushing singularities in L through the dashed
lines. But Figure 5-3 shows that we can push individual singularities from one side of
L to the other, by moving the singularity all the way around the n-copy of L;. Hence
Legendrian-isotopy changes of L do not change S(L, L).

Next consider Legendrian-isotopy changes of L. It suffices to show that S(L, f}) does
not change under Legendrian Reidemeister moves on L. Consider such a move, and push
L away from a neighborhood of the move. Then the fact that the Legendrian-isotopy class
of S(L, L) does not change follows from Figure 5-4. O

Remark 5.1.6. Both the proof of Theorem 5.1.5 and Corollary 5.1.7 below have been known
for some time. It is also possible, and probably more natural, to establish Theorem 5.1.5
using the global, non-front definition of Legendrian satellites; we chose to present the front
proof because of its concreteness.

Corollary 5.1.7. Legendrian-isotopic knots in R® have Legendrian-isotopic n-copies.

Proof. The n-copy of a knot K is simply S(K, f/(")), where L(™ is the union of n unlinked
loops which wind once around S* x R?; see Figure 5-5 for an illustration of L) The result
follows from Theorem 5.1.5. Il
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Figure 5-5: The solid-torus links L(?) and S (with obvious generalization to a family of
links S,,), and the solid-torus Whitehead knots Wa, k& > 0, with Wy and Wy shown as
examples. The box indicates 2k half-twists.

Corollary 5.1.8 ([Mi]). Suppose that K is a stabilization of a Legendrian knot. The n-
copy of K is Legendrian isotopic to the n-copy with components cyclically permuted. More
precisely, if L1, ... , L, are the components of the n-copy of K, with L; slightly higher than
L; 1 in z coordinate, then (L, Lo, . .. , Ly,) is Legendrian isotopic to (L1, Latk, .-, Lntk)
for any k, where indices are taken modulo n.

Proof. Suppose, without loss of generality, that K = S, (K') for a Legendrian knot K'.
Then the n-copy of K is the Legendrian satellite S(K',S,,), where S,, is the solid-torus
“n-copy stabilization link” depicted in Figure 5-5. It is easy to see that S, is Legendrian
isotopic to itself with components cyclically permuted; now apply Theorem 5.1.5. O

We now present some applications of Theorem 5.1.5 to knots and links on the solid
torus. Consider the link L(?) shown in Figure 5-5. The following result, established in [Tr]
using generating functions, is also proven in [NT] using the DGA for solid-torus links. The
proof we give is yet another one.

Proposition 5.1.9. Write L® = (Ly,La). Then (L1, L) is not Legendrian isotopic to
(L2, Ly).

Proof. In Section 4.6, we showed that the double of the figure eight knot is not Legendrian
isotopic to the double with components swapped; see Proposition 4.6.1. The result now
follows from Theorem 5.1.5. U

Now consider the Whitehead knots Ws; shown in Figure 5-5. Each Wy, has r = w =0
and is thus topologically isotopic to its inverse. By contrast, we can now show the following
result.

Proposition 5.1.10. Wy is not Legendrian isotopic to its inverse.

Proof. As usual, write —Wy, for the inverse of Wy, and let L be the double of the usual
“flying-saucer” unknot in R3. For k = 1, it is easy to check that S(L, W) is precisely the
oriented Whitehead link from Section 4.7, and that S(L,—W5;) is the same link with one
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component reversed. Proposition 4.7.1 and Theorem 5.1.5 then imply that Wy and —Wj
are not Legendrian isotopic.

A calculation similar to the one in the proof of Proposition 4.7.1, omitted here, shows
that S(L, Wy) and S(L, —Woy) are not Legendrian isotopic for arbitrary & > 0. The result
follows. O

The solid-torus DGA from [NT] fails to distinguish between Wy, and its inverse. Propo-
sition 5.1.10 is thus a result about solid-torus knots whose only presently-known proof uses
the Legendrian satellite construction.

5.2 Doubles

As we observed in Remark 2.2.10, the Chekanov-Eliashberg DGA invariant vanishes for
links which are stabilizations. The Legendrian satellite construction, however, seems to
yield nontrivial nonclassical invariants of all Legendrian links; see Remark 5.2.7 below. On
the other hand, the main result of this section shows that some of the simplest Legendrian
satellites of stabilizations do not contain any new information.

Definition 5.2.1. The Legendrian Whitehead double of a Legendrian knot K in R3 is
S(K,Wp), where Wy is the knot shown in Figure 5-5. More generally, if L has two endpoints,
then we call S(K, L) a satellite double of K.

As mentioned in Section 5.1, the Legendrian Whitehead double was originally defined

by Eliashberg, with further study by Fuchs [Fu], who uses the notation I'4(0,0) for our
S(K,Wpy).
Remark 5.2.2. Legendrian satellites and mazimal tb. By Remark 5.1.3, the Legendrian
Whitehead double of any Legendrian knot has Thurston-Bennequin number 1. As noted
by J. Sabloff and the author, it is easy to show that the Legendrian Whitehead double
maximizes tb in its topological class. This follows from the fact that g(S(K,Wy)) = 1,
along with Bennequin’s inequality tb(K) < 2g(K) — 1 [B], where g(K) is the (three-ball)
genus of K. A similar argument shows that the usual double of any Legendrian knot
maximizes tb.

It is not true, however, that all satellite doubles maximize ¢b, even when L maximizes
tb. In particular, if L has a half-twist X next to its endpoints, and K is a stabilization,
then S(K, L) will also be a stabilization.

Proposition 5.2.3. If K1 and Ky are stabilized Legendrian knots in the same topological
class with the same tb and r, then the DGAs of the Legendrian Whitehead doubles of K;
and Ky are equivalent.

The key to proving Proposition 5.2.3 is the following result, whose proof we delay until
Section 5.3.

Lemma 5.2.4. For any Legendrian knot K which is a stabilization, the DGAs of S(K, Wy)
and of S(S+S_(K),Wy) are equivalent.

Proof of Proposition 5.2.3. By a result of [FT|, any two Legendrian knots which are topo-
logically identical and have the same tb and r are Legendrian isotopic after some number of
applications of the double stabilization operator S;.S . That is, there exists an n > 0 such
that (S+S-)"K; and (S4+S_)"K> are Legendrian isotopic. The proposition now follows
directly from Lemma 5.2.4. O
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Remark 5.2.5. Tt can in fact be shown that the DGA of the Legendrian Whitehead double
of a stabilized knot depends only on the tb and r of the knot, and not on its topological class.
In particular, we can recover the result of [Fu] that the DGA of a Legendrian Whitehead
double always possesses an augmentation.

A slightly modified version of the proof of Lemma 5.2.4, omitted here for simplicity,
establishes the following more general result.

Proposition 5.2.6. If K1 and K3 are stabilized Legendrian knots in the same topological
class with the same tb and r, and L is any Legendrian link in S 1 X R? with two endpoints
and winding number zero, then the DGAs of S(K1,L) and S(K2,L) are equivalent.

We believe that Proposition 5.2.6 actually holds for any satellite doubles of stabilized
knots K7 and K, with the same tb and r, regardless of the winding number of L. However,
the analogue of Lemma 5.2.4 is false if L has winding number 42, since § (K, 1~}) and
5(S,S_(K),L) have different tb; see Remark 5.1.3. Nevertheless, the argument of the
proof of Lemma 5.2.4 shows that the characteristic algebra, at least, can never distinguish

between satellite doubles of stabilized knots.

Remark 5.2.7. Invariants of stabilized Legendrian knots. As mentioned earlier, it remains a
very interesting open problem to find nonclassical invariants of stabilized Legendrian knots.
There are currently no methods to prove that two stabilized knots with the same topological
type, tb, and r are not Legendrian isotopic. Such methods would likely yield nonclassical
invariants of some transversal knots as well; see Remark 1.2.2.

We are hopeful that satellites more complicated than doubles will encode interesting
information for stabilized knots. In particular, it seems that the n-copy of any Legendrian
link maximizes Thurston-Bennequin number when n > 2, and thus probably has a nontrivial
DGA. By Corollary 5.1.7, the DGAs of Legendrian satellites of a Legendrian link, including
the n-copy, are Legendrian-isotopy invariants, which likely contain interesting nonclassical
information in general. The problem we face when dealing with complicated satellites,
however, is extracting useful information from the characteristic algebra.

There is another approach to finding invariants of stabilized knots, which is probably
more natural than investigating satellites. Eliashberg, Givental, and Hofer [EGH] have
recently developed symplectic field theory, which generalizes contact homology; Section 2.8
of [EGH] describes how this method yields invariants of Legendrian links, which would likely
not vanish for stabilized knots. Unfortunately, no explicit combinatorial description, a la
Chekanov, is presently known for the symplectic field theory associated to Legendrian links.

5.3 Proof of Lemma 5.2.4

We may assume without loss of generality that K = S, (K') for some Legendrian K'. By
using, if necessary, Legendrian Reidemeister moves I (more precisely, the mirror of I) and
ITb from Figure 1-1, we may further assume that the rightmost cusp in K’ is oriented
downwards. If we shift the zigzag in K = S, (K') next to the rightmost cusp in K’, then
K and S(K,W)) look like the diagrams in Figure 5-6 near the rightmost cusp.

The corresponding parts of S;S_(K) and S(S+S_(K),Wp) are also shown in Fig-
ure 5-6, and S(K,Wy) and S(S+S_(K),Wp) are identical outside the regions depicted.
It is easy to check that the degrees of all vertices not depicted are equal for the two
Legendrian Whitehead doubles, and that the degrees of the vertices depicted are 1 for
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S, S.(K)

S(K,W,)

S(S,S.(K) W)

Figure 5-6: Whitehead doubles of stabilizations. In the lower diagrams, vertex a; is labelled
by 1.

ai,as,as,a4,as, a9, a10,a11 and 0 for as,aq,ar,ai2,a13,a14,a15, in either diagram. Since
the regions drawn are the rightmost parts of each double, the DGA for S(S;S_(K), Wp) is
simply obtained from the DGA for S(K,Wy) by making the following replacements:

( Oas = 1 — tasag
Oaz = t 11— agQ12
Oag = 1 — taisais
dag =t 1 — ajass
0aig = 1 — taisa14
dail = til — aisar
6(15 = 6(16 = 6(17 =0
( Oaiz = day3 = ayy = Oays =0 )

Oas = 1 — tasag
Oaz = t71— agary —
Oas = Oag = Oay = 0

We further note that none of the vertices depicted in Figure 5-6, besides a1, a4, as, a7,
appears anywhere in the DGAs except in the equations above; as, a7 appear additionally in
0ay, Oay, respectively.

Our goal is to apply elementary automorphisms and algebraic stabilizations to the DGA
for S(S4+S_(K),Wy), until we obtain the DGA for S(K,W,). Start with the DGA for
S(S+S_(K),Wy); we begin by rewriting das, dag, ag, daip, 0a11 in a more manageable
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form.

We first wish to rewrite Jas as daz = t 1 — agay. (Intuitively, this follows from the fact
that a5 = a7 in the characteristic algebra or in the homology of the DGA.) We define the
words a1, a2, a3 in the DGA as follows, and then compute day, das, das:

a1 = taizag — a1pa13 O0ay = a5 — a3
ag = tay] — ajay — Oag =1 —tajzar
a3 = agar — a1202 (90(3 = a7 — ai2.

Then if we apply the elementary automorphism ag — a3+ agas, we obtain daz =t~ —agay.
In a similar fashion, we can successively replace dai1, 0aig, Oag, Oag as follows: dai; =
1 — a15as; Oap=1-— tagaly; Oag = 1 — a5ai3; Oag = 1 — taqsas.
For convenience, we now define

as = (1 — ta6a5)a3 + agasay == Oag = T agas .

By applying the elementary automorphisms a1 +— a1 + @2 and ais — a5 + ag, we obtain

0a11 = —aisas. Similarly, we may write dai1g = —tagai4, Oag = —asai3, dag = —taiag.
At this point, the DGA has the following form:

Oas = 1 —tasag Oag = —asais
Oaz = t1— agary Oalg = —tagais
Oag = —taizag 0a1n = —aisas

Oas = Oag = Oay; = Oa1a = Oa13 = a4 = Oais = 0.

We next eliminate ag, a11,a12,a15 through algebraic stabilization and destabilization.
Introduce e; and ey of degree 0 and —1, respectively, with Je; = e2 (and Oez = 0). Let &4
be the composition of the following elementary automorphisms in succession:

a2 — a1z — €105, ag — ag — €1a2; e1 — e1 + tajzag — e2az2.

Under ®;, the DGA changes as follows:

Oag = —taioag Oag = e
861 = €2 (3] 861 =0
Oaip =0 — Oa12 = ezas
Oey =0 Oey =0

We may then drop ag and e;; these simply correspond to an algebraic stabilization.
Let ®2 be the composition of the following maps:

ais — ais — taiea6; a1l — a1l — taieas; aiz = ai2 +aisas — tegasas; als —> ais + eas.

Under @5, the DGA now changes as follows:

O0a11 = aisas Oa11 = a2
6(112 = €205 Po 0a12 =0
=2
Oais =0 Oais = e2
862 =0 662 =0

We can now drop ai1,a12,a1s5, €2; these correspond to two algebraic stabilizations.
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Hence, up to algebraic stabilizations, we have eliminated ag, a11,a12,a15. An entirely
similar process allows us to eliminate ag, a19,a13,a14. The resulting DGA is precisely the
DGA of S(K,W)y), as desired. O

Remark 5.3.1. The only part of this proof which uses the structure of Wy is the calculation
of the degrees of the vertices in Figure 5-6. To prove the more general case given in
Proposition 5.2.6, we have to take more care vis-a-vis degrees, but the idea is the same.
The proof also extends to knots which are not satellite doubles, but whose rightmost parts
look like the bottom diagrams in Figure 5-6.
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Chapter 6

Maximal Thurston-Bennequin

number for two-bridge and pretzel
links

This chapter addresses a problem which is closely related to, but slightly different from, the
questions of Legendrian isotopy which are the main concern of this dissertation. We study
the maximal Thurston-Bennequin number for two classes of links, the two-bridge links and
the three-stranded pretzel links. Using a bound provided by the Kauffman polynomial, we
are able to calculate maximal tb for most of these links. We conclude with a section which
relates the maximal tb problem to the rest of this dissertation.

6.1 Introduction and results

In this chapter, we will use the word “link” to denote either a knot or an oriented link; the
Thurston-Bennequin number, of course, is not well defined for unoriented multi-component
links. Since the results below are primarily interesting for knots, we will denote links by K.

For a fixed topological link type K, the set of possible Thurston-Bennequin numbers of
Legendrian links in R? isotopic to K is bounded above; it is then natural to try to compute
the maximum tb(K) of tb over all such links. Note that we distinguish between a link and
its mirror; tb is often different for the two. In some sense, tb is the Legendrian equivalent
of the genus of a smooth knot, which is also bounded in one direction; the genus, however,
seems to be more difficult to compute in general.

Bennequin [B] proved the first upper bound on tb(K), in terms of the (three-ball) genus
of K. Since then, other upper bounds have been found in terms of the slice (or four-ball)
genus [Ru2], the HOMFLY polynomial [FT], and the Kauffman polynomial. The strongest
upper bound, in general, seems to be the Kauffman bound first discovered by Rudolph
[Rul], with alternative proofs given by several authors. See [Fer| for a more detailed history
of the subject.

Recall the definition of the Kauffman polynomial Fk(a,z) of an oriented link K; we
use the normalizations of [FT], which are the same as the original ones from [Kau2] except
with a replaced by a~!.
Kauffman polynomial (or L-polynomial) Ly(a,z) is defined recursively via the following
skein relations:

First consider an unoriented link diagram 7. The unoriented
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Now, given an oriented link K, let T be an oriented link diagram representing K, and let
w(T') denote the writhe of T', or the signed number of crossings in T', with signs determined
by Figure 6-1. Then we define the Kauffman polynomial by Fg(a,z) = a*T)Ly(a, ).
Although Ly is only an invariant under regular isotopy (i.e., isotopy fixing the writhe), Fx
is an invariant under smooth isotopy.

For a polynomial P(a,z), let v(P) denote the minimum degree of a in P(a,z).

Theorem 6.1.1 (Kauffman bound). If K is an (oriented) Legendrian link in standard
contact R3, then th(K) < v(Fk) — 1.

The Kauffman bound is not sharp in general; see, e.g., [Fer| or [EH]. Sharpness has
been established, however, for some small classes of knots, including positive knots [Tan]
and most torus knots [Eps, EH]. Etnyre and Honda have also exhibited in [EH] the first
known family of knots for which the Kauffman inequality fails to be sharp.

In this chapter, we will investigate sharpness for two somewhat larger classes of links,
2-bridge (rational) links and three-stranded pretzel links. We will demonstrate that the
Kauffman bound is sharp for all 2-bridge links and most pretzel links, and will exhibit
classes of pretzel links for which we believe the Kauffman bound fails to be sharp. (Part of
the calculation for pretzel links has already been performed in [FT]; see Remark 6.1.5.)

Remark 6.1.2. For two-bridge links and three-stranded pretzel links, the other bounds on
tb (genus, slice genus, HOMFLY) fail to be sharp in general.

Before stating our main results, we recall the definitions of 2-bridge and pretzel links.
A 2-bridge link is any nontrivial link which admits a diagram with four vertical tangencies
(two on the left, two on the right). A (three-stranded) pretzel link is a link of the form
P(p1,p2,ps3) depicted in Figure 6-2. It is easy to see that the smooth isotopy class of the
P(p1,p2,p3) is unchanged under permutations of the p;. _

We need one more piece of notation. For an oriented link K, define tb(K) = v(Fk) —
1 —#b(K); then tb(K) > 0, with equality if and only if the Kauffman bound is sharp for K.

Theorem 6.1.3. If K is an oriented 2-bridge link, then tb(K) = 0.

eJ_ _|i

Figure 6-1: Calculating the writhe of an oriented link diagram. The writhe is the signed
number of crossings of the link diagram, counted with the signs above.
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C— —

p

C ) —

P3

Figure 6-2: The pretzel link P(p1,p2,p3) and the torus link T'(p). Each box contains the
specified number of half-twists, with the same conventions as in Figure 6-3.

Theorem 6.1.4. Suppose p1,p2,p3 > 0. Then th=0 for P(p1,p2,p3), P(—p1,p2,p3), and
P(—p1,—p2,—p3), and for P(—p1, —pa,p3) when p1 > pa # ps + 1. For the remaining case,
we have

2 ifp1 >p3+4,
0 < tb(P(—p1,—p3 —1,p3)) < <3 ifpr =p3s+3,
1 ifpr=p3+1orp =p3+2.

Remark 6.1.5. Theorem 6.1.4 is only partially original. Kanda [Kan2] calculated tb for
P2n +1,2n 4+ 1,2n + 1), n > 1, using Giroux’s theory of convex surfaces. Fuchs and
Tabachnikov [FT] subsequently calculated tb for P(p1,p2,ps3) and P(—p1, —p2, —p3), using
the Kauffman bound and the HOMFLY bound, respectively.

We will prove Theorem 6.1.3 in Section 6.2 and Theorem 6.1.4 in Section 6.3. Section 6.4
discusses consequences and possible ramifications of these results, and formulates ties with
previous chapters.

6.2 Proof for 2-bridge links

In this section, we prove Theorem 6.1.3. Let K be a 2-bridge link; we first need to find a

suitable Legendrian embedding of K. Say that a link diagram is in rational form if it is in

the form T'(ai,... ,ay,) illustrated by Figure 6-3 for some ay,...,a,. Clearly any rational-

form diagram corresponds to a 2-bridge link; by the classification of 2-bridge links ([Sch], or

see [Mur] for a very accessible exposition), any 2-bridge link has a rational-form diagram.
To each T'(as,...,an), we may associate a rational number, the continued fraction

1 1 1 1
[al,...,an] :al+——(],2+a_3+——a4+ +(—]_)T]w¢n

Note that our convention is the opposite of the convention in [Lic], and differs by alternating
signs from the standard convention from, e.g., [Mur|. The classification of 2-bridge links
further states that if 1/[ag, ... ,an]—1/[b1,... ,bs] € Z, then T'(ay, . ..,a,) and T'(b1,... ,by,)
are ambient isotopic. (The criterion stating precisely when two such links are isotopic is
only slightly more complicated, but will not concern us here.)

Now define T'(ay,...,ay) to be in Legendrian rational form if a; > 2 for all ¢. Although
T(ai,... ,ay) corresponds to a Legendrian link whenever a; > 1 for all 4, it is crucial to the
proof of Lemma 6.2.2 that a; > 2 for 2 < i < n — 1. Indeed, if one of these a; is 1, then it
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a a, a,
C a any )
n odd
a a3 o g )
( a2 an
n even
DR AN
-/ (N
positive twists negative twists
Figure 6-3: The rational-form diagram T'(ai,...,a,). Each box contains the specified

number of half-twists; positive and negative twists are shown.

?xf 000

Figure 6-4: The correspondence between a diagram in Legendrian rational form (in this
case, 17'(2,2,3), or 52) and the front of a Legendrian link of the same ambient type.
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is straightforward to see, by drawing the front, that the resulting Legendrian link does not
maximize Thurston-Bennequin number.

Any link diagram in Legendrian rational form is easily converted into the front of a
Legendrian link by replacing the four vertical tangencies by cusps; see Figure 6-4. Since
the crossings in a front are resolved locally so that the strand with more negative slope
always lies over the strand with more positive slope, a link diagram in Legendrian rational
form is ambient isotopic to the corresponding front. (This observation explains our choice
of convention for positive versus negative twists.)

Lemma 6.2.1. Any 2-bridge link can be expressed as a diagram in Legendrian rational
form.

Proof. Let K be a 2-bridge link; let T'(ay,...,a,) be a rational-form diagram for K, and
write [a1,...,a,] = p/q for p,q € Z. The classification of 2-bridge links implies that K is
isotopic to any rational-form diagram associated to the fraction r = p/(¢ — [1]p) > 1. (If
g/p is an integer, then it is easy to see that K is the trivial knot, which is not 2-bridge.)
Define a sequence 1, z2,... of rational numbers by 1 =7, z;+1 = 1/(Jz;] — x;). This
sequence terminates at, say, z,,, where z,, is an integer. Write b; = [z;]|. It is easy to see
that b; > 2 for all 4, and that r = [b1,...,by,). Then K is isotopic to T'(by,...,by), which
is in Legendrian rational form. O

Consider a link diagram T' = T'(ay, ..., a,) in Legendrian rational form, and let K be
the (Legendrian link given by the) front obtained from 7. We claim that the Thurston-
Bennequin number of K agrees precisely with the Kauffman bound. Recall that the Kauff-
man polynomial Fy(a,z) of T is a®(") times the unoriented Kauffman polynomial (or L-
polynomial) Ly (a,x), where w(T) is the writhe of the diagram T'. (Here we use Kauffman’s
original notation [Kaul], except with a replaced by 1/a.)

We will need a matrix formula for L (a,z) due to [Lic]. Write

r -1 =z 0 1 0 1 a
M=|1 0 o0}, S=|l0 01), wv=|0], w= a? :
241
0 0 1/a 1/a 0 0 0 ot
then

Ly(a,....an) @, T) = %vtM*‘“*lSM*arlS- MGy,
where t denotes transpose.
Lemma 6.2.2. Ifaj,a, > 1 and a; > 2 for 2 <i <n—1, then v(Ly(q,,.. a0, (a,)) = —1.

Proof. None of M1, S, and w contains negative powers of a; thus the lemma will follow if
we can show that f(z) # 0, where

f(z) = (WM~ 1SM 2718 . .. M~ "1 Sw)|,—0.
Define the auxiliary matrices
0

A=M1p=1]-1
0

, B=(M2SM™)|ao =

o8 =
O O O
o8 =
o O O
o O O
IS

|

—
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Then (ASw)|q—0 = 2 Au and B = Auv', and so

flz) = vtA"1BA2 2B A% 2B.. -A“"*1_2BAG"_1(ASw)|a:0
= %(vtA‘“u)(vtA“2_1u)(vtA“3_1u) - (VP A1) (vt A%).

But if we define a sequence of functions fi(z) = v*A*u, then an easy induction yields the
recursion fri2(z) = zfri1(z) — fr(z) with fi(z) = 1 and fa(z) = z. In particular, for all
kE > 1, fr(z) has degree k — 1 and is thus nonzero. From the given conditions on a;, it
follows that f(x) # 0, as desired. O

Proof of Theorem 6.1.3. Let T be a Legendrian rational form for a 2-bridge link K. The
crossings of 1" are counted, with the same signs, by both the writhe of T" and the Thurston-
Bennequin number of the Legendrian link K’ obtained from T'; tb(K'), however, also sub-
tracts half the number of cusps. Hence

(K') = w(T)—2
(Fr(
(Fr(

) —v(Lr(a,z)) -2
) -1

by Lemma 6.2.2. Since K’ is ambient isotopic to K, we conclude that tb(K) is at least
v(Fr) — 1; by the Kauffman bound, equality must hold. O

a,x
a,x

<

6.3 Proof for pretzel links
Theorem 6.1.4 follows from the following result.

Lemma 6.3.1. Suppose p1,p2,p3 > 0. Then

v(P(p1,p2,p3)) = —2,
v(P(=p1,p2,p3)) = —p1,
U(P(_pla —p2, _p3)) =2 —P1— P2 — D3,

and, fO’I‘ D1 > p2,

(2—p1—p2+ps ifp2>ps+2,
—p1 if p2 < p3,
v(P(=p1,—p2,p3)) = {2 — 1 ifp1 —3>pa=p3+1,
3—p1 ifpr —2=p2 =p3+1,
(1 —m ifpr—1l=pa=p3s+1orpr=p2=p3+1.

Before we prove Lemma 6.3.1, we deduce Theorem 6.1.4 from it.

Proof of Theorem 6.1.4. Fronts for Legendrian forms of the various pretzel knots are given
in Figures 6-5 and 6-6. For the given form of P(p1, p2,p3), we have tb = w(P(p1,p2,p3)) —3,
because the cusps contribute —3 and each crossing gives the same contribution to ¢b and to
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P,

VoV

Ps

& _

Ps — =

Figure 6-5: Fronts for P(p1,p2,p3), P(—p1,p2,ps), and P(—p1, —p2, —p3). Horizontal and
vertical boxes represent the sample boxes depicted, with the label denoting the number of
crossings. As an example, the front for P(—3,5,4) is given at bottom.

the writhe w of the link diagram for P(p1,p2,p3) shown in Figure 6-2. By Lemma 6.3.1,

tb — U(FP(phpz,Ps)) +1 = th— U(LP(p1,p2,P3)) - 'l.U(P(p1,p2,p3)) +1
—2 — v(P(p1,p2,p3))
— 0,

and the Kauffman bound is sharp. Similar calculations show that the Kauffman bound is
sharp for the given Legendrian forms of P(—pj,p2,ps), for which tb = w(P(—p1,p2,p3)) —
p1 — 1, and P(—p1, —p2, —p3), for which tb = w(P(—p1, —p2, —p3)) — p1 — p2 — p3 + 1.

For the Legendrian forms of P(—p1, —p2, p3) given in Figure 6-6, with p; > ps, a routine
calculation yields

th— w(P(—p1,—p2,p3)) —p1—p2+p3+1 ifps>ps+2,
w(P(=p1,—p2,p3)) —p1 — 1 if pp <ps+1.

Although Figure 6-6 only shows Legendrian forms for ps > 2, a similar calculation holds
when ps = 1. We now use Lemma 6.3.1, as before, to conclude that the Kauffman bound is
sharp for ps # p3 + 1, and to deduce the bounds on tb in the statement of the proposition
for po = p3 + 1. O
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Figure 6-6: Fronts for P(—p1, —p2,p3), where p; > p2 > 2. The top front is for py > p3 + 2;
the second is for po < ps 4+ 1. Horizontal and vertical boxes are as in Figure 6-5; dashed
boxes with a number inside indicate that number of concatenations of the small figure in
the dashed box. As examples, the fronts for P(—7,—5,2) and P(—4,—3,5) are given at
bottom.
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The rest of this section is devoted to the proof of Lemma 6.3.1. Let T'(p) denote the torus
link shown in Figure 6-2; by abuse of notation, we will write T'(p) also for the unoriented
Kauffman polynomial of the knot diagram portrayed in Figure 6-2. We may compute
T(p) inductively from the following lemma, which follows directly from the Kauffman skein
relations, applied to one of the crossings of T'(p).

Lemma 6.3.2. T(p)+T(p—2)=zT(p— 1) + za? L.

Lemma 6.3.2 allows us to calculate the part of the polynomial T'(p) with lowest degree
in a, by induction from the well-known (or easily calculated) values for T'(0) and T'(1). For
a polynomial P(a,z), let A\(P) be the sum of the terms in P with lowest degree in a, so
that A(P) is the product of a*(¥) and a polynomial in z.

Lemma 6.3.3. We have

(@~ +o(aP ))a™ ifp>1,

z a1 ifp=0,
AT(p) = e ifp=-1,
r—z Hal ifp=-2,
| zaP T if p< —3.

Here o(+), as usual, represents terms of lower order.

The key to the proof of Lemma 6.3.1 is the following result, which follows from an
application of the Kauffman skein relation to one of the p; crossings of the link P(p1, p2, p3)
when p; > 0, or to one of the |p; — 2| crossings of the link P(p; — 2,p2,p3) when p; < 0.

Lemma 6.3.4. P(p1,p2,ps) + P(p1 — 2,p2,p3) = 2P (p1 — 1,p2,p3) + zaP* T (pa + ps3).

Now suppose, as in the statement of Lemma 6.3.1, that pi, ps, p3 > 0. The calculations
of U(P(P17P27P3))a U(P(_plap27p3))a U(P(_plv_p27p3))a and U(P(—Pla_P27_P3)) are by
induction, with varying degrees of difficulty, using Lemma 6.3.4.

For P(pi1,p2,p3), Lemma 6.3.1 now follows from the following result.

Lemma 6.3.5. For p1,p2,p3 > 0, we have

)\(P(pl,p2’p3)) — ($P1+P2+P3—2 + O(wp1+pz+p3—2)) a 2.

Proof. We prove this by induction on p; +ps + ps. The cases (p1,p2,p3) = (0,0,0), (0,0,1),
(0,1,1), and (1,1,1) are all easily checked. Otherwise, assume without loss of general-
ity that p; > p2 > ps3; then p; > 2. By Lemma 6.3.3, v(T(p2 + p3)) = —1, and by
the induction assumption, A(P(p; — 1,p2,p3)) = (aP11P2¥Ps—3 4 o(gP1HP21P3-3)) g2 and
AP(p1 — 2,p2,p3)) = (aPrTP2Ps—4 4 o(gP11P2¥Ps—4)) g=2. The result now follows from
Lemma 6.3.4. O

The proofs of Lemma 6.3.1 for P(—p1,p2,ps) and P(—p;,—p2, —p3) are easy inductions
along the lines of the proof of Lemma 6.3.5, and will be omitted.

Now consider P(—pj, —p2,p3). The following lemma, which completes the proof of
Lemma 6.3.1, can be established by induction on p; + ps + p3, as before. The precise
computations, which are quite involved but straightforward given the statement of the
lemma, are omitted here.
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Lemma 6.3.6. We have

2—p1—p2+p3 ifps>p3+2,
v(P(=p1, —p2,p3)) = { —P1 if p2 < ps,
2—p ifpr—3>p2=p3+1,

and, furthermore,

P(—(ps +3),—(ps +1),p3) = (—2* + 22%)a P + - - ps>3
P(~ (p3+2), (3 +1),p3) = —a™P 7 4 (=2’ +z)a ™ 40 py>3
P(—(ps+1),—(ps +1),p3) = —z’a 7 + - p3 >3
P(—p3,—p3,p3) = 2a P + -- p3 >3
P(—(p3+1),—p3,p3) =a P 1 +0.a P + p3>1
P(—p3,—(p3 —1),p3) = za ¥ + .- p3 > 2
P(—(p3+1),—(ps — 1),p3) = wa "' +2%a™P + p3 > 2
P(—p3,—(p3 —2),p3) = (z° — 1)a P + .- p3 > 3,

where ellipses denote terms of higher degree in a.

6.4 Discussion

In this section, we discuss some intriguing connections between the maximal Thurston-
Bennequin story and the Chekanov-Eliashberg story from previous chapters.

We first note that the Chekanov-Eliashberg DGA and the characteristic algebra are
effective tools for determining when a given Legendrian link maximizes Thurston-Bennequin
number. Recall that the DGA (and hence the characteristic algebra) of any stabilized link
is trivial; see Remark 2.2.10. We believe that a converse statement may also hold.

Conjecture 6.4.1. If a Legendrian link K has trivial characteristic algebra, then it is
Legendrian isotopic to a stabilization.

Even if this conjecture is not true, triviality of the characteristic algebra is often a good
indication, in practice, that ¢b is not maximal.
Here is a related proposal.

Conjecture 6.4.2. Any Legendrian link which is not Legendrian isotopic to a stabilization
maximizes Thurston-Bennequin number.

This conjecture would be difficult to prove from the DGA standpoint. If true, however, it
would combine with the DGA picture to facilitate computations of maximal tb when the
Kauffman bound fails. Any Legendrian link whose characteristic algebra did not vanish
would then automatically maximize tb. (This is our basis for asserting probable maximal
Thurston-Bennequin numbers below for certain links.)

There appear to be mysterious connections between nonsharpness of the Kauffman in-
equality and the Chekanov-Eliashberg algebra. D. Fuchs [Fu] has proposed the following
statement, which he calls an “irresponsible conjecture.”

Conjecture 6.4.3 ([Fu]). The Kauffman bound is sharp for a Legendrian knot K if and
only if the Chekanov-Eliashberg DGA for K admits an (ungraded) augmentation.
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(For the definition of augmentation, see Section 3.2.) The conjecture was originally stated
for graded augmentations, but is false in this case. We would like to propose a related
conjecture, for which we have some (but not overwhelming) empirical evidence.

Conjecture 6.4.4. The Kauffman bound is sharp for a Legendrian knot K if and only if
the abelianized characteristic algebra of K is not trivial.

Certainly, if the abelianized characteristic algebra of K is trivial, then the DGA for K
admits no augmentation. Recall that we conjectured in Section 3.2 that the abelianized
characteristic algebra of K, when K maximizes tb, depends only on the smooth isotopy
class of K.

For the remainder of this section, we survey what is known about sharpness of the
Kauffman bound for particular links. We begin with prime knots with small numbers of
crossings, for which we can apply our 2-bridge result.

The class of 2-bridge links includes many prime knots with a small number of crossings.
More precisely, all prime knots with seven or fewer crossings are 2-bridge, as are all prime
knots with eight or nine crossings except the following: 85, 819, 815821, 916, 922, 924, 925,
998, 929, 930, and 932—949. Examples drawn by hand by N. Yufa [Yu] and the author show
that the Kauffman bound is sharp for all of the above eight-crossing knots except for 819
(more precisely, the mirror image of the version drawn in [Rol]). Since 89 is the (4,—3)
torus knot, a result of [EH] yields tb = —12 in this case, while the Kauffman bound gives
tb < —11. These calculations and Theorem 6.1.3 yield the following result.

Proposition 6.4.5. The Kauffman bound is sharp for all prime knots with eight or fewer
crossings, except the (4, —3) torus knot 819, for which tb = 1.

Further drawings show that the Kauffman bound is sharp for all of the nine-crossing
prime knots which are not 2-bridge, except possibly for 942 (more precisely, the mirror of
the one in [Rol]). For this last knot, we believe that tb = 2. In Appendix B, we include a
table of tb for prime knots with nine or fewer crossings.

We next consider other knots. The only known family of knots for which the Kauffman
bound is not sharp are the (p, —q) torus knots with p > ¢ > 0 and g odd [EH]; for these
knots, we have tb = p — q. Our results with pretzel links suggest more families for which
Kauffman may not be sharp. B

Recall from Theorem 6.1.4 that tb(P(—pi1, —p3 — 1,p3)) is not necessarily zero when
p1 > p3+1, while Kauffman is sharp for all other three-stranded pretzel links. Among these
exceptional pretzel links, the only cases for which ¢b is known are the two pretzel knots which
are also torus knots: P(—3,—3,2) is the (4, —3) torus knot, while P(—5, —3,2) is the (5, —3)
torus knot. From [EH], we conclude that tb(P(—3,—3,2)) = 1 and tb(P(-5,—3,2)) = 2.

Calculations with the characteristic algebra lead us to believe that tb(P(—p, —p,p—1)) =
1 in general. This would give the second known class of links for which Kauffman is not
sharp. For the other exceptional cases, we do not currently have guesses for what tb ought
to be; the characteristic algebra, however, suggests that the Legendrian links shown in
Figure 6-6 do not maximize tb in these cases.
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Appendix A

Front projection proofs

In this appendix, we provide proofs for the major results about the Chekanov-Eliashberg
DGA over Z[t,t~!] described in Section 2.4, in the front-projection setup. Although these
results have already been established in [ENS] for the Lagrangian projection, it is sometimes
useful to have proofs for the front projection available for reference.

A.1 Proof of Proposition 2.4.1

Please refer to Section 2.2 for terminology and notation. This proof is quite similar to the
corresponding proof (of Lemma 4.7) in [ENS].

Consider an admissible map f in the front projection of a Legendrian knot K, hav-
ing initial vertex at a; and corner vertices at aj,,...,a;,. Since this contributes a term
:|:t*"(f)aj1 ---aj, to Oa;, we wish to prove that

4
dega; = Zdegaj,c —2n(f)r(K) + 1.
k=1

For any oriented path - in the diagram of K, write ¢(-y) for the number of cusps traversed
upwards along -y, minus the number of cusps traversed downwards. Let 4 be the closed
curve which is the union of the (counterclockwise oriented) boundary of the image of f and
the capping paths v;, —7vj;,.-.,—7;j,- Then the winding number of 4 along K is n(f) by
definition, and so ¢(¥) = —2n(f)r(K).

On the other hand, we also have

)4
¢(7) = c(£(0D?) +e(3s) — 3 el3).

k=1

Since some of the paths begin and end at right cusps, we need a convention for when right
cusps are included in these paths. For convenience, we impose the following conventions:

e capping paths for right cusps oriented upwards include the cusp (traversed upwards);

e capping paths for right cusps oriented downwards exclude the cusp at both of their
endpoints;

o f(8D?) does not include its initial vertex if this vertex is a right cusp;
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e f(8D?) includes a corner-vertex right cusp once, traversed upwards, if it enters and
leaves the cusp from above; once, traversed downwards, if it enters and leaves from
below; and once, traversed upwards, if it enters from above and leaves from below
(i.e., the cusp is counted twice as a corner vertex).

It is straightforward to check that these conventions form a consistent way to include and
exclude right cusps. From the definitions, it is obvious that c(v;) = dega; and c(v;,) =
degaj,, and a simple diagram chase shows that ¢(f(60D?)) = —1. The result follows. O

A.2 Proof of Proposition 2.4.2

Fix i; we wish to prove that 8%a; = 0. The idea is to show that every monomial in 8%a;
occurs twice, with opposite signs and the same powers of t. A monomial in 8%a; is given
pictorially by two admissible maps, one, f1, with initial vertex at a;, and the other, f3, with
initial vertex at some corner vertex a; of fi. (If a; is a right cusp, then we account for the
extra 1 term in Oa; by artificially allowing f> to be possibly the constant map at the point
ay, corresponding to the monomial 1.)

The maps f; and f> share a common boundary beginning at a; and ending at some
other vertex aj; moreover, it is easy to see that this common boundary is smooth and
travels only from right to left (starting at a; and ending at a;), and that aj, is a node. We
can glue the two maps along their common boundary to get another map f3 from D? to
the plane, which no longer has a corner vertex at a;, and which would be admissible, with
initial vertex at a;, except for the singularity at ag; the image of f3 occupies three of the
four regions around ay (but not the region on the “left”).

Fix f3. The common boundary C between a; and a; can then be viewed as the smooth
image under f3 of a smooth curve in D? starting at (the preimage of) a;, and ending either
on the boundary of D? or at (the preimage of) a cusp, such that C always lies in the knot
projection Y. There are two possible ways to draw C, depending on which curve we choose
to leave aj through; each splits the image of f3 into two regions (one possibly empty), and
each of which contributes the same monomial, up to sign, to 8%a;. (One of these two regions
is empty when a; is a right cusp and f; is the constant map at a;.) We need to check that
the two choices for C' give two different signs, and the same power of ¢, to the monomials
they contribute to 8%a;. See Figure A-1 for a concrete illustration.

Figure A-1: Two contributions to 8a; for the front from Figure 2-6 which glue together
to form the same map, and which each contribute the monomial +aq9a7 to 8%a;. The left
diagram corresponds to the terms ajpas in da; and ay in das; the right, ag in da; and
—aijoary in 80,6.
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We first verify the powers of ¢. As described in Section 2.2, n(f;), for ¢ = 1,2, is the
winding numbers around K of the oriented closed curve consisting of the union of f;(8D?)
and the capping paths of the vertices of f;. The power of ¢ associated to the monomial in
0%a; given by f1 and f2 is n(f1) + n(f2). It is easy to see, however, that the sum of the
closed curves associated to f1 and fo depends only on f3, and so n(f1) + n(f2) is the same
for both of the decompositions of fs.

The rest of this section is devoted to verifying the signs. We will need some more
notation. Define the sign of f3 analogously to our definition of the sign of an admissible
map: sgn f3 is the product of (—sgnay) over all downward corner vertices ay. Given two
vertices v, w on the boundary of f3, let vw denote the section of the boundary of f3 between
them (counterclockwise from v to w), and then let sgnow be the product of the signs of all
(not necessarily downward) corner vertices in the interior of the section. For convenience,
let o be the sign of the contribution of f; and f» to 8%a;. Then we claim that

o = £(sgna;ax)(sgnag)(sgn f3),

where the + sign is + if C follows the curve of higher slope from ag, and — if it follows the
curve of lower slope. The desired result will then follow.

From the definition of 9, o is (sgn f1)(sgn f2) times the product of the signs of the
corner vertices in fi; which occur before a;. On the other hand, there is nearly a one-to-one
correspondence between downward corner vertices in f3 and the aggregate of downward
corner vertices in fi and fa, so that (sgn f1)(sgn f2) is nearly (sgn f3).

We now have several cases, illustrated in Figure A-2, depending on whether the endpoint
aj of C is a vertex on the boundary of f3 before aj, a vertex on the boundary after ay, or a
right cusp in the interior of f3. (This last case occurs when f3 is the trivial constant map at
the right cusp a;.) Write 7 = (sgna;ax)(sgnay)(sgn f3); then we want to establish o = %7
for the appropriate sign.

In Case 1, every downward corner vertex in fi or fy appears as a downward corner vertex
in f3, except for a;, which only appears in f; hence (sgn f1)(sgn f2) = (—sgna;)(sgn f3).
From Proposition 2.4.1 applied to f2, we know that sgna; = —(sgnajay)(sgnay). Hence

o = (sgna;a;)(sgn f1)(sgn f2) = (sgna;a;)(—sgnajar)(sgn f3) = 7.

We deal with the other cases similarly, by counting the downward corner vertices in f; or
fo but not in f3:

o = (sgnaay) (sen 1) (sen f2) = (sgnaiay) (sgn o) (sgnax)(sgn fs) = -1 (case 2)
o = (sgnajay)(sgnay)(sgn f1)(sgn f2) = 7 (case 3)
o = (sgna;ar)(sgn f1)(sgn f2) = —7 (case 4)
o = (sgna;ay)(sgnag)(sgn f1) = 7 (case 5)
o = (sgnaia)(sgn fi) = -7 (case 6). O

A.3 Proof of Theorem 2.4.3

To show that the differential algebra of a front is invariant (up to stable isomorphism) under
Legendrian isotopy, it suffices to show that it is invariant under each of the Legendrian
Reidemeister moves shown in Figure 1-1. The methods used in this proof closely follow
those used in [Ch, section 10].
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Figure A-2: Gluing two admissible maps f; and f2 together. The dashed curve represents
the boundary of the combination map f3. In Cases 5 and 6, f2 is the trivial constant map
at the right cusp a;.

(3
b
) |
(1) ~—
= T
%) @

Figure A-3: The vertices affected by move I, with several relevant regions labelled.
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We first deal with move I, which is shown in Figure A-3. The three vertices affected
by the move are labelled by a, b, c in each diagram, and all other vertices ai,...,a,_3 are
unaffected by the move. We have also shaded in ten relevant regions. Denote the front
projection on the left by K, and the one on the right by K'; let @ and ' be the differentials
on the algebra A = Z[t,t'](a,b,c,a1,... ,a,_3) corresponding to K and K', respectively.
We claim that 8’ = gdg !, where g sends b to b + ca and leaves the other generators of A
fixed.

It is immediate by inspection of Figure A-3 that da = 0'a and dc = d'c. We can assume
that a, b, and c are arbitrarily close to each other, so that no term in any of da, d'a, dc, or
d'c involves b: any admissible map with a negative corner vertex at b must have a corner
vertex to the right of a,b,c. Thus 8’a = gdg '(a) and &'c = g8g 'b.

Now consider another vertex a; besides a,b,c. Any admissible map in K or K’ with
initial vertex at a; has a unique analogous map in the other front, unless part of its boundary
looks like (2) or (ii). An admissible map M in K which locally looks like (2) has a companion
admissible map M in K which has (1) glued onto (2) (so that corner vertices a and ¢ are
replaced by b); this companion map corresponds to an admissible map M’ in K’ which
locally looks like (iii), and the combined contribution of M and M to da; is precisely the
contribution of M’ to d'a;, except with b replaced by b — ca. (In fact, (—sgnb)b is replaced
by (—sgnb)b + (—sgna)(—sgnc)ca, but it is easy to show that sgnb = (sgna)(sgnc); just
adapt the proof of Proposition 2.4.1.)

Similarly, an admissible map M’ in K’ which locally looks like (ii) has a companion
admissible map M' in K ', which corresponds to an admissible map M in K, and the
combined contribution of M’ and M’ to &a; is precisely the contribution of M to da;,
except with b replaced by b+ ca. All other admissible maps (ones whose monomials contain
neither b nor ca) in K or K' can be matched up one-to-one. Summing up the contributions
of all admissible maps with initial vertex at a;, we conclude that d'a; = gda; = gdg 'a;.

Note that we do not need to worry about powers of ¢ here or elsewhere for move 1. The
capping paths for K and K’ limit to each other as we approach the triple-point singularity,
as do the boundaries of the images of corresponding admissible maps in K and K’. Thus
the winding numbers giving the powers of ¢ must be the same for corresponding terms in
K and K'.

It remains to show that 8'b = g0g~'b. Admissible maps in K with initial vertex at b
fall into two categories: (A) those which look like (4) near b (i.e., have a corner vertex at
a), and (B) those which look like the union of (4) and (5) near b (i.e., do not have a as
a corner vertex). Similarly, admissible maps in K’ with initial vertex at b are either (A’)
those which look like (iv) near b, or (B’) those which look like the union of (iv) and (v) near
b. Write the contribution of (A) maps and (B) maps to db as 01b and 02b, respectively, and
similarly for (A’) and (B’).

There is a one-to-one correspondence between (B) maps and (B’) maps, and so 02b = 94b.
There is also a one-to-one correspondence between (A) maps and admissible maps with
initial vertex at ¢ (simply glue region (1) to region (4), which gets rid of the corner vertex
at a); hence 01b = (9c)a. Similarly, 91b = (—sgnc)cd'a = —(sgnc)cda. We conclude that

9'b = 0\b+ 84b = —(sgnc)cda + 02(b) = (b — ac) = gdg 'b.

This completes the proof for move I. Moves II, III, and IV can be addressed at the same
time, with varying degrees of difficulty.
Each of these moves begins with a front projection and adds two vertices to it: either
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Figure A-4: The new vertices a and b created by moves II, III, and IV.

two nodes (in the case of IT and III), or a node and a right cusp (in the case of IV). We will
prove invariance for the moves as drawn in Figure 1-1; the proofs for the mirror images of
these moves in the z axis, while not identical, are entirely similar.

Denote the original front projection by K, and the new one (with two more vertices) by
K'. Write the vertices of K (in order from highest to lowest z coordinate) as aq, ... ,an;
these are also the vertices of K', along with the two new vertices a and b (where a is to the
right of b). If we arrange the vertices of K’ in order from right to left, we may assume that

a and b are adjacent, so that the vertices occur in the order aq,... ,ak,a,b,ax+1, ... ,an for
some k. (For II, aj, is thus the right cusp next to a and b.) See Figure A-4.
For brevity, we will refer to Z[t,t~'](ay,... ,a,) as A, and to Z[t,t"'](a1,... ,an,a,b)

as A'. Let the differentials on A, A’ arising from K, K’ be 9,9, respectively. To show
that (A,0) and (A',0’) are stably isomorphic, we first need to stabilize A: let S(A) be
the stabilization Z[t,t '](a1,... ,an,e1,e2) of A, where the degrees of e; and es will be
determined later, with the differential (also denoted 9) inherited from A and also satisfying
de1 = ez, 0es = 0. Let A be the submodule of S(A) over Z[t,t '] generated by monomials
containing either e; or es, so that S(A) has the submodule decomposition S(4) = A @ A.
Finally, if a is a right cusp in K or K', write (a) = 1 if a is oriented upwards and n(a) = ¢t~ *
if a is oriented downwards, so that da or &'a contains 7(a) as a term.

We first define an isomorphism ¢ between S(A) and A’. Send a; to a;, and map e; and
es as follows:

a—n(ax) tarb, —b+v+n(ar) tarw for move II
¢ : e, ea > a, b for move III
a, b+ n(a) for move IV.

For move II, define w = 9'b; we still need to define v. There is a one-to-one correspondence
between admissible maps on K’ with initial vertex a and a corner vertex at b, and admissible
maps with initial vertex ay, by deleting/appending the “curved triangle” with vertices
a,b,ay. Hence the contribution to &a of maps with a corner vertex at b is, up to powers of
t, (8’ak — 1)b = (8ak — 1)b.

To calculate the appropriate powers of ¢, let 4, 75, 74, denote the capping paths asso-
ciated to a, b, ag. Independent of the orientations of various sections of K, v, — 7y is the
closed curve winding around the curved triangle once counterclockwise. A bit of thought
then shows that the desired contribution to d'a is (n(ax) '0ay — 1)b.

We now define v be the contribution to &a of maps without a corner vertex at b, i.e.,
v=0a — (n(ax) 10ay — 1)b.

Returning to the definition of ¢, we note that, for each move, ¢(e;) and ¢(e2) are
of pure degree in Z, and deg¢(e;) = deg¢p(e2) + 1. For example, for move II, the fact
that 74 — v is the curved triangle counterclockwise shows that dega = degb + 1, and so
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Figure A-5: Locally deforming admissible maps in K to admissible maps in K’ in move IV.
The bottom diagram requires the addition of corner vertex b.

degv = degb = deg(n(ax) ‘arw). Thus ¢ gives a graded differential isomorphism between
S(A) and A’

Under ¢, & pulls back to a differential on S(A), which we also write as &'. It then
suffices to exhibit an automorphism on S(A) sending d to d'. Note that we have defined
¢ so that &’e; = es,dex = 0: for move II, this follows from the definitions of v, w above,
while for moves III and IV, this follows from the fact that &a = b and 9'a = n(a) + b,
respectively.

We now have the following key result (cf. Lemma 10.2 in [Ch, Lemma 10.2]).

Lemma A.3.1. For all i, da; — 8'a; is in A C S(A).

Proof. We prove the lemma separately for each move. We view ¢ as giving relations between
e1,ez,a, and b, and will henceforth identify A" with S(A) and suppress ¢.

For move III, simply observe that every admissible map in K’ not using a = e; or b = es
as a corner vertex gives a corresponding admissible map in K, and vice versa.

For move IV, any admissible map in K whose initial vertex is one of the a; can be
locally deformed to an admissible map in K’ by using the correspondence in Figure A-5
wherever necessary. Conversely, it is straightforward to see that any admissible map in K’
not containing a as a corner vertex arises from an admissible map in K in this way. (Any
admissible map in K’ containing a as a corner vertex contributes a monomial to 8'a; which
is in fl) The admissible maps in the upper diagram in Figure A-5 contribute the same
amount to da; and &'a;. The contributions of the maps in the lower diagram differ by the
introduction of (—sgnb)n(a)~tb = —n(a)~'b = 1—n(a) les into the monomials in K'; thus
each term in Oa; — & a; contains es.

We now consider move II. Fix a vertex a;; the terms in da; — &'a; arise from the ad-
missible maps which locally look like one of the figures in Figure A-6. (These are precisely
the maps in K or K’ which have no analogue in the other front.) The maps in K’ depicted
in the top row can be paired up by appending/deleting the curved triangle; the contribu-
tion to da; — 0'a; of each of these pairs is a multiple of a — n(ax) ‘arb = e, since the
monomial for the right-hand map is identical to that for the left-hand map, except with
(—sgnb)n(ag) tagb = (sgna)n(ar) axb instead of (—sgna)a. Similarly, we can dispose of
the maps in K’ depicted in the second row of Figure A-6.

The third row of Figure A-6 is more complicated. Any map in K corresponding to
the middle or right figure (in the third row) breaks up into two maps in K’ if we imagine
dragging the right cusp aj past the crossing line; see Figure A-7. One is precisely a map
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Figure A-6: The maps in K and K’ contributing to da; — 8'a; in move II. As usual, heavy
lines indicate the boundary of the map, and heavy shading indicates overlapping. Negative
corner vertices are marked, with multiplicity.

75



c2

Figure A-7: Splitting a map in K into two maps (shaded differently) in K’, for move II.

like the left figure (of the third row); the other corresponds to an entry in v (for the middle
figure) or w (for the right figure). Conversely, we can assemble any two such maps in K’
to give such a map in K. Thus a map like the left figure gives the same contribution to
Oa; — 0'a; as the corresponding maps like the middle or right figures, except with a replaced
by —n(ax) rarv — n(ar) ajw. But a — n(ar) tary — nlar) 2w = er — n(ar) 'ages, so
the contribution of the third row in toto is in A. An identical argument works for the fourth
row of Figure A-6; here we use the fact that b — v — n(ax) lapw = —es. O

Define a terraced differential with respect to the ordering ay, ... ,ax,€1,€2,0511,.-- ,0n
to be a differential such that 0 maps a variable to an expression only involving variables fol-
lowing this variable in the list; by our observation that the rightmost point in an admissible
map must be the initial vertex, we conclude that both d and &’ are terraced. Theorem 2.4.3
then follows from Lemma A.3.1 and the following lemma (cf. [Ch, p. 26]).

Lemma A.3.2. If 0 and ' are terraced differentials with respect to ai,...,ay, e1,e€2,
Qkily--- ,0n, Such that dey = O'ey = b, Oex = ez = 0, da; = d'a; fori > k+ 1, and
Oa; — 0'a; € A for all i, then O and &' are tamely isomorphic.

Proof. For each i < k+1, define Aj;; C S(A) to be the algebra generated by a;, . .. ,ax,e1, €2,
Qki1,--- ,0n, and note that & = &' on Ajgy1)- We construct a series of automorphisms g;
of A', for : = 1,... ,k, so that if we inductively define Ogy1) = 0,0 = gia[iﬂ}g;l, then
djy = 0’ on Ap;). The automorphism g; will send a; to a; +¢; (where ¢; € An A1) is to be
determined), and will leave the other generators of A’ fixed.

Suppose by induction that we have determined g;;1,...,qx so that J; ) agrees with
9" on Aj;,q); we want to define ¢; € AN Af;41) s0 that Jf;) = gia[iﬂ}gi_l agrees with 8’ on
Ay Note that 0;,1) maps Aj;,q) to itself (because of the terraced differential condition),
and so J; will certainly agree with 0" on Ali+1); thus we simply need to find g; such that
0[,'] a; = 6lai.

Now 0j;1jai € Aj;41) by the terraced condition again, and 9} 1)¢; = 0'q; by the induction
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hypothesis (and the fact that ¢; € Aj;1q)); thus

dai = 9i01119; “ai = 9i0p1)(ai — &) = Oynjai — 'a;.

If we write r; = 9);11ja; — 0'a;, then it suffices to define ¢; so that 9'q; = r;.

Since gj41,... ,qk € A by induction assumption, and da; — 8'a; € A by hypothesis, we
see that r; € A. In addition, since 0ji+1)ai € Aj41), and @ and ' are differentials, we have
O'ri = &0y q0i — 8%a; = 07, ya; — 8%a; = 0.

Now define the linear map h : S(A) — S(A) as follows: if w € A, then h(w) = 0; if
y € A and z € S(A), then h(ye1z) = 0 and h(yez2z) = (sgny)ye1z. We claim that hd’' + d'h
is the vector space projection from S(A) = A & A to A. Indeed, hd' + &'h vanishes on A;
also, if y € A, then (hd' + 8'h)(ye12z) = (sgny)h(yezz) = ye1z, and

(hd' + 8'h)(ye2z) = h ((8'y)egz + (sgn yeg)yeg(a'z)) + (sgny)d' (ye1z) = yeaz.
If we define g; = h(r;), then it now follows that
8’qi = 6lh(7‘i) = ha,T‘i + 71y =T

Also, r; € Ajj4q), and s0 g; € An Afitq)- This completes the induction. O
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Appendix B

Maximal Thurston-Bennequin
number for small knots

The table on the next page gives the maximal Thurston-Bennequin number for all prime
knots with nine or fewer crossings. Note that this table improves on the corresponding one
from [Tan|, which only considers one knot out of each mirror pair, and does not achieve
sharpness in a number of cases. By Theorem 6.1.3, we can calculate %(K ) from the Kauff-
man polynomial when K is 2-bridge; the computations when K is not 2-bridge follow from
figures drawn by N. Yufa [Yu] and the author.

We distinguish between knots and their (topological) mirrors by using the diagrams in
[Rol]: the knots K are the ones drawn in [Rol], with mirrors K. The boldfaced numbers
indicate the knots for which the Kauffman bound is not sharp (for 819), or probably not
sharp (for 942). As mentioned in Section 6.4, we believe that tb = —5 for the mirror 949
knot; the best known bound, however, is the Kauffman bound tb < —3.
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|
1

K |th(K) |th(K) || K |th(K) |th(K)| K |th(K)|th(K)| K |tb(K) | th(K)
01 -1 1 8s —4 —6 || 95 -8 —3 || 9991 -8 -3
31 —6 1|8 -5 11l 99 —16 5 || 930f —6 -5
44 -3 1 810f -2 —8 | 919 3| —14 | 95 -9 -2
51 —-10 31 811 -9 —1| 911 1| —12 93f -2 -9
59 -8 1| 812 -5 11 912 —-10 —1 | 955t —6 -5
61 -5 -3 813 —4 —6 | 913 3| —14 | 934 —6 -5
62 -7 —1 814 -9 —1 914 —4 719557 | —12 1
63 —4 185 —13 31 915 -10 —1 | 936f 1| -12
7 —14 5| 816t -8 —2 1| 936t 5 —16 | 937 —6 -5
7o -10 1| 87 -5 1l 917 -8 —3 | 93sf | —14 3
73 3| —12 818 -5 I 918 —14 3 || 939t —-1| -10
T4 1| —10| 81of 5| —12 | 919 —6 —5 || 940f -9 -2
75 —12 3 || 890t —6 —2{| 999 —12 1 947 -7 —4
76 —8| —1| 8xf -9 1921 —1| —10 | 942f -3 | —5(?)
Ty —4 —519; —18 7 || 9927 -3 —8 || 945t 1| -10
81 -7 -3 99 —12 1| 923 —14 3 || 944t —6 -3
8, —11 1|95 5| —16 | 9241 —6 —51{ 94| —10 1
83 -5 1| 94 —14 319257 | —10 —1 || 946t -7 -1
84 -7 —31 95 1| —121 99 -2 —9 || 941 -2 -7
851 1] —111 9 —16 5 || 997 —6 —5 || 945t -1 -8
86 -9 —119; —14 3 || 995t -9 —2 || 949t 3| —12
87 -2 -8

Table B.1: Maximal Thurston-Bennequin numbers for prime knots with nine or fewer cross-
ings. A dagger next to a knot indicates that it is not two-bridge; a double dagger indicates
that the knot is amphicheiral (identical to its unoriented mirror).
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