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Chapter 1
Introduction
1.1 Legendrian links in standard contact R 3There has recently been an explosion of interest in contact geometry, largely because ofits impact on the geometry and topology of three-manifolds. Contact geometry is alsointricately linked with the theory of four-manifolds; see, e.g., [KM] for a link betweencontact structures and four-dimensional gauge theory.In studying contact three-manifolds, two special classes of knots and links, Legendrianand transversal, play a critical role. Probably the �rst application of knots in contactgeometry was Bennequin's famous demonstration [B] of the existence of \exotic" contactstructures on R 3 , using transversal unknots; this work inspired Eliashberg's central tight-versus-overtwisted dichotomy for contact structures on three-manifolds [E2]. Since then,Legendrian knots have been instrumental in distinguishing between homotopic contactstructures on manifolds such as homology spheres [LM] and the three-torus [Kan1]. Knotsin contact geometry have also produced consequences for general three-manifold topology;for instance, Rudolph [Ru3] has established a relationship between invariants of Legendrianknots and sliceness.The question underlying contact knot theory is simple: when are two Legendrian ortransversal links the same, i.e., isotopic through Legendrian or transversal links? Thisquestion, �rst explicitly stated in [Ar], also appears in Kirby's problem list [Kir]. Werestrict our attention to links in R 3 with the standard contact structure, since this providesa local model for any contact manifold. We will further devote our attention solely toLegendrian links, which are better studied and seem to have more structure; the study ofLegendrian links may also produce results for transversal links.An isotopy through Legendrian links is called a Legendrian isotopy. There are two \clas-sical" Legendrian-isotopy invariants of Legendrian knots in standard contact R 3 , Thurston-Bennequin number and rotation number. (The story for multi-component links is similarbut a bit more complicated.) The �rst result towards a classi�cation of Legendrian-isotopyclasses of knots was Eliashberg and Fraser's demonstration [EF] that the classical invariantscompletely determine the Legendrian-isotopy class of an unknot. Since then, the classicalinvariants have also been shown to form a complete set of invariants for torus knots andthe �gure eight knot [EH].A breakthrough on the Legendrian isotopy problem occurred in 1997, when Chekanov[Ch] and, independently, Eliashberg and Hofer (unpublished) showed that there are knottypes for which the classical invariants do not su�ce to characterize Legendrian-isotopy
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classes. More speci�cally, they demonstrated that there are two 52 knots, in the familiarterminology of the knot table from [Rol], which have the same classical invariants, but arenot Legendrian isotopic.The tool they used is a new invariant of Legendrian links, which we will call theChekanov-Eliashberg di�erential graded algebra (DGA). Eliashberg and Hofer derived thisalgebra from a relative version of the contact homology introduced in [E4]. The beauty ofthe DGA is that, unlike general contact homology, there is a simple method for comput-ing it from knot diagrams. Chekanov, motived by the relative contact homology picture,discovered a purely combinatorial formulation of the DGA, and proved its invariance com-binatorially, in [Ch]; his work is the starting point for most of this dissertation.Etnyre, Sablo�, and the author [ENS] have since given a rigorous treatment of therelation between Eliashberg and Hofer's relative contact homology and Chekanov's com-binatorial theory. By using ideas from Floer homology concerning coherent orientations,[ENS] also lifts the DGA for a Legendrian knot K from an algebra over Z=2, graded overZ=(2r(K)), to one over Z[t; t�1], graded over Z.The Chekanov-Eliashberg DGA, though extraordinarily useful as a tool for distinguish-ing between Legendrian links, has two drawbacks. The �rst is that, in practice, it can bedi�cult to use. Chekanov de�nes the DGA in terms of the Lagrangian projection of a Legen-drian link, but it is not easy to manipulate Lagrangian-projected knots. More importantly,it is hard in general to tell when two DGAs are the same. Until now, the only known tech-nique was to use polynomials de�ned by Chekanov, which we call the Poincar�e-Chekanovpolynomials; in essence, these calculate the homology of a �nite-dimensional quotient of theDGA. These polynomials, however, are useful only in some cases.The second drawback of the Chekanov-Eliashberg DGA is that it vanishes for any Legen-drian link which is a stabilization. In practice, this renders it useless for any link which doesnot maximize Thurston-Bennequin number, since stabilization lowers Thurston-Bennequinnumber by one. It is thus important to know when a link maximizes Thurston-Bennequinnumber, and to �nd invariants which do not vanish for stabilized links.Broadly speaking, the goal of this dissertation is to improve our understanding of Leg-endrian links in standard contact R 3 by addressing the problems mentioned above. We willreformulate the DGA in the front projection, which is much more often used in practicethan the Lagrangian projection, and re�ne the DGA in the process. Next we introduce newcomputable invariants from the DGA, most notably the characteristic algebra; these arequite a bit more e�ective in distinguishing between Legendrian links than previously knowninvariants. We use our new techniques to answer several open questions about Legendrianlinks. Finally, we describe invariants which may give interesting information for stabilizedlinks, and we calculate the maximal Thurston-Bennequin number for two large classes oflinks, two-bridge links and three-stranded pretzel links.There is obviously much still to be done in this subject. Eliashberg, Givental, andHofer [EGH] have recently introduced a notion of symplectic �eld theory which generalizescontact homology; we would like to understand invariants of Legendrian links obtained fromsymplectic �eld theory. Also, one important property of Legendrian knots is that we canperform Legendrian (�1)-surgery on them to obtain another tight contact manifold [E3].Does the new manifold encode the Chekanov-Eliashberg DGA of the knot, and does theDGA give us information about the manifold? Further, more speci�c open questions areasked throughout this dissertation, but especially in Sections 3.2 and 6.4 and Remark 5.2.7.Here is an outline of the rest of this dissertation. We supply the necessary technicalbackground in Section 1.2, and review Chekanov's construction of the DGA in Section 1.3.
10



Chapter 2 de�nes the DGA (more precisely, the lifting described in [ENS]) for front projec-tions of knots, and discusses an improved version of the DGA for links as well. In Chapter 3,we de�ne the characteristic algebra and demonstrate how it incorporates previously knowninvariants. Chapter 4 is devoted to applications of the theory from Chapters 2 and 3, speci�-cally to distinguish between several previously indistinguishable Legendrian knots and links.Chapter 5 introduces a new construction, the Legendrian satellite, and uses it to establishsome results about Legendrian links on the solid torus; in the future, Legendrian satellitesmay also produce useful invariants of stabilized links. In Chapter 6, we address a slightlydi�erent subject by computing maximal Thurston-Bennequin numbers for two-bridge andpretzel links.To make this dissertation more self-contained, we include proofs in Appendix A of themain results about the Chekanov-Eliashberg DGA for the front-projection picture, ratherthan simply referring to the Lagrangian-projection proofs from [Ch] and [ENS]. Appendix Bgives a table of maximal Thurston-Bennequin numbers for prime knots with nine or fewercrossings, improving on the table from [Tan].A note about original content: a fair amount of this dissertation has already appearedin preprints by the author. Chapters 2, 3, and 4 are taken from [Ng3], while the contentof Chapter 6 for two-bridge links, as well as Appendix B, is from [Ng2]. Although notexplicitly used here, [Ng1] is subsumed into Section 4.1. No material from the coauthoredpapers [ENS] and [NT] appears in this dissertation, although results from these papers arecited in Chapters 2 and 5, respectively.
1.2 Background materialThis section is a clearinghouse for the de�nitions and results needed for the rest of thedissertation, and also indicates the conventions we will use. We will also suggest a way inwhich this dissertation connects with the theory of transversal links.A contact form on a smooth three-manifoldM is a global 1-form � such that �^d� 6= 0everywhere on M ; then ker� gives a completely nonintegrable distribution on M , which wecall a contact structure. We may view contact structures as the odd-dimensional analogueof symplectic structures on even-dimensional manifold. A contactomorphism between twocontact manifolds is a di�eomorphism mapping one contact structure to the other.As a matter of convention, we will use the word \link" to denote either a knot or alink. Links which are not knots will be called \multi-component links" for clarity wherenecessary. All multi-component links are assumed to be ordered; that is, there is a speci�cordering to the components of the link. If L1; : : : ; Lk are the ordered components of a linkL, we write L = (L1; : : : ; Lk).A Legendrian (resp. transversal) link in a contact three-manifold M is a link on which� vanishes identically (resp. never vanishes). Two Legendrian links are Legendrian isotopicif they are isotopic through Legendrian links; we may similarly de�ne transversal isotopyfor transversal links. The relative version of a celebrated theorem of Gray [Gr] implies thattwo links are Legendrian isotopic if and only if there is an ambient contact isotopy of Mmapping one to the other.The standard contact structure on R 3 is given by � = dz�y dx. By Darboux's Theorem,any point in a contact three-manifold has a neighborhood contactomorphic to R 3 with thestandard contact structure.There are two standard methods of representing Legendrian links in standard contact
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Figure 1-1: The Legendrian Reidemeister moves which relate Legendrian-isotopic fronts.The same moves, re
ected about the x (horizontal) axis, are also allowed.
R 3 via projections to R 2 : the Lagrangian projection to the xy plane, and the front projectionto the xz plane. We consider each of these projections separately.Given the Lagrangian projection of a link, we can recover the link by setting z =R y dx. This is unique, up to translation in the z direction for each component of thelink. The Lagrangian projection of a link gives a link diagram in R 2 , i.e., an immersionof the appropriate number of copies of S1 into R 2 , along with overcrossing-undercrossinginformation. Determining conversely whether a link diagram is the Lagrangian projection ofa Legendrian link is not easy, although a reasonably useful necessary-and-su�cient conditionis given in [Ch]. The signed area R y dx enclosed by a component of the link diagram mustbe zero; each crossing in the link diagram also implies an inequality on the areas of theregions into which the diagram divides R 2 . We will deal only with generic link diagrams,for which all crossings are transverse double points.De�ne a front to be an immersion of some number of copies of S1 into R 2 , with no verticaltangencies, and smooth except for cusp singularities where the front changes direction in x.The front projection of a link is a front, and we can recover the link from its front by settingy = dz=dx. It is unnecessary to specify overcrossing-undercrossing information for fronts,since the strand with greater negative slope has smaller y coordinate and hence crosses overthe other strand. We will deal only with generic fronts, for which all singularities are eithercusps or double points.For practical purposes, fronts are often more useful than Lagrangian projections, be-cause of the di�culty mentioned above in determining when a link diagram represents aLegendrian link. There is a simple condition, in terms of fronts, for two Legendrian linksto be Legendrian isotopic: they must be related by a series of the Legendrian Reidemeistermoves shown in Figure 1-1 [Swi].The two classical invariants of oriented Legendrian knots under Legendrian isotopy arethe Thurston-Bennequin number tb and the rotation number r; these can be easily de�nedfor either projection. For the front projection of an oriented Legendrian knot K, we de�netb(K) = # + # � # � # � #r(K) = 12 �# + # � # � # � :For the Lagrangian projection of K, we de�netb(K) = # � # ;
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Figure 1-2: Stabilization of a Legendrian link, in the front projection.
and r(K) is the counterclockwise rotation number (in revolutions) of K traversed once inthe direction of its orientation.Remark 1.2.1. Regular isotopy and Lagrangian projection. Recall that a regular isotopyof knot diagrams is an isotopy which avoids the usual Reidemeister move I (adding orsubtracting a loop). In the Lagrangian projection, a Legendrian isotopy is a special case ofa regular isotopy. In this context, tb and r may be more familiar as the classical regular-isotopy invariants, writhe (cf. Figure 6-1) and Whitney degree; see [Kau1].Note that tb(K) is independent of the orientation of K, while r(K) is negated when wereverse the orientation. It is easy to see that tb and r are preserved by Legendrian isotopy.For oriented multi-component Legendrian links L, we may also de�ne tb and r as above;in this case, however, tb and r for any subset of the link components also give classicalinvariants. For instance, for a two-component oriented link L = (L1; L2), the full setof classical invariants is given by ftb(L); tb(L1); r(L1); tb(L2); r(L2)g. Note that r(L) =r(L1)+ r(L2), and that (tb(L)� tb(L1)� tb(L2))=2 = lk(L1; L2) is the usual linking numberof L1 and L2.The operation of stabilization on Legendrian links adds a zigzag to a segment of a front,as shown in Figure 1-2. (Both S+ and S� will be called stabilizations.) It can be checkedthat, up to Legendrian isotopy, stabilization is independent of the segment chosen, as longas it is chosen in a �xed link component. Thus, for a Legendrian knot K, S+(K) and S�(K)are well-de�ned up to Legendrian isotopy, and S+ commutes with S�. We havetb(S�(L)) = tb(L)� 1r(S�(L)) = r(L)� 1:In particular, links with maximal Thurston-Bennequin number cannot be stabilizations.Remark 1.2.2. Transversal knots. If K1 and K2 are Legendrian knots of the same topo-logical isotopy class, then they are Legendrian isotopic after applying a suitable number ofpositive and negative stabilizations to each knot [FT]; a corresponding result also holds forlinks. We call K1 and K2 stably Legendrian isotopic if there exists an n such that (S+)nK1and (S+)nK2 are Legendrian isotopic.The concept of stable isotopy is mainly useful because of transversal knots. Any Leg-endrian knot K can be slightly perturbed in the direction of the positive normal to Kwithin the contact structure, to obtain a transversal knot K+, and any transversal knot istransversally isotopic to such a K+. The following result is well-known; see [EFM].Theorem 1.2.3. If K1 and K2 are oriented Legendrian knots, then the transversal knotsK+1 and K+2 are transversally isotopic if and only if K1 and K2 are stably Legendrianisotopic.At present, there are no known transversal links which are smoothly isotopic and have thesame transversal linking number, but are not transversally isotopic. We hope in the future
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to use our techniques for Legendrian links to construct examples of such transversal links;see Remark 5.2.7.Remark 1.2.4. Legendrian mirrors and inverses. There are other interesting operationsbesides stabilization that we can perform on Legendrian links. Given a Legendrian linkL, let the Legendrian mirror m(L) be its image under the contactomorphism (x; y; z) 7!(x;�y;�z), and let the inverse �L be L with each component's orientation reversed. (Inthe front projection, m(L) is the re
ection of L about the x axis.) We have tb(m(L)) =tb(�L) = tb(L) and r(m(L)) = r(�L) = �r(L).It is asked in [FT] if m(L) is always Legendrian isotopic to L when r(L) = 0; clearlym(L) is always smoothly isotopic to L. Similarly, we can ask if �L is always Legendrianisotopic to L when r(L) = 0, for link types L which are invertible, i.e., smoothly isotopic totheir inverses.In [Ng1], the author answers the question of [FT] by giving an example such thatr(L) = 0 and m(L) is not Legendrian isotopic to L; this argument is reprised in Section 4.1.A recent result of Etnyre and Honda implies that there are invertible connected sumsK1#K2 of Legendrian knots K1;K2 with r(K1#K2) = 0 and �(K1#K2) not Legendrianisotopic to K1#K2. It is not presently known whether there is a Legendrian knot K ofinvertible, prime topological type, with r(K) = 0, which is not Legendrian isotopic to �K.We believe, however, that the DGA over Z[t; t�1], which depends on orientation, should beable to provide examples of such a knot.
1.3 Chekanov's construction of the DGAIn this section, we summarize Chekanov's original construction of the DGA invariant from[Ch], which uses the Lagrangian projection. We will reformulate this construction carefullyin the front projection in Chapter 2, which is self-contained; the reader may thus skip toChapter 2 with no di�culty.For simplicity, we will con�ne our discussion to knots. Chekanov de�ned the DGA of aLegendrian knot K as an algebra over Z=2 graded over Z=(2r(K)); by imposing a coherentset of orientations on the appropriate moduli spaces, J. Etnyre, J. Sablo�, and the author[ENS] subsequently lifted this DGA to an algebra over Z[t; t�1], where t is an indeterminate,graded over Z. We outline the de�nition of the original DGA over Z=2, and refer the readerto the two sources above for complete details.Let K be a Legendrian knot in standard contact R 3 , whose Lagrangian projection isa link diagram which we also call K. Label the crossings of K by a1; : : : ; an. The DGAfor K is the free, noncommutative unital algebra A = (Z=2)ha1 ; : : : ; ani, with grading anddi�erential given below.To de�ne the grading on A, we temporarily perturb K so that the two intersectingbranches at all crossings are orthogonal. For a crossing ai, consider a path in K beginningat the undercrossing at ai and following K until we reach the overcrossing at ai. The

−

+

+

−

Figure 1-3: Signs associated to the four quadrants at a crossing.
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counterclockwise rotation number (in revolutions) of this path is of the form �(2k + 1)=4for some integer k; then let deg ai = k. It is easy to check that, modulo 2r(K), this iswell-de�ned. Extending this degree map to all of A (with deg 1 = 0) gives a grading of Aover Z=(2r(K)).We next de�ne the di�erential on A. At each crossing, label the four quadrants nearthe crossing by the signs given in Figure 1-3. (Note that these signs are the negation of thesigns in [Ch], since we use a di�erently oriented contact form on R 3 .) De�ne an admissibleimmersion on K to be an immersion f from the disk D2, with some number of markedpoints on its boundary, to R 2 , satisfying the following conditions:� f(@D2) lies in K, and f j@D2 is smooth away from the marked points;� f maps marked points to crossings of K;� f maps a neighborhood of a marked point to exactly one quadrant at a crossing;� of the signs associated to the resulting quadrants for all marked points, exactly one isa +.The crossing with the + sign is called the positive corner of the admissible immersion; thecrossings with � signs are called the negative corners.Consider an admissible immersion f with positive corner at ai. We associate to fthe monomial �(f) = aj1 � � � aj` , where aj1 ; : : : ; aj` are the negative corners of f , taken incounterclockwise order starting after ai. (If f has no negative corners, then we set �(f) = 1.)Now we de�ne @ai =X�(f);here the sum is over all di�eomorphism classes of admissible immersions with positive cornerat ai. We can extend this di�erential to all of A by setting @(1) = 0 and imposing the Leibnizrule @(vw) = (@v)w + v(@w).Remark 1.3.1. Motivation. Admissible immersions are natural objects of study in the rel-ative contact homology theory developed in [E4]. Since the Reeb vector �eld in standardcontact R 3 points in the z direction, Reeb chords in R 3 beginning and ending on K corre-spond to crossings of the Lagrangian projection of K. In the symplectization R 3 � R of R 3 ,relative contact homology studies holomorphic curves with boundary on Y � R which limitto Reeb chords at �1 in the R direction, with one Reeb chord at +1 and some numberof Reeb chords at �1. If we project to R 3 , these holomorphic curves become admissibleimmersions, with the limiting Reeb chords becoming positive and negative corners. See[ENS] for more details.Example 1.3.2. For the �gure eight knot shown in Figure 1-4, with r = 0 and tb = �3, wecan calculate that a2; a4; a5; a7 have degree 1, a1; a3 have degree 0, and a6 has degree �1.The di�erential @ is given by@a1 = a6 + a6a3 + a6a3a5a6 @a4 = 1 + a3 + a5a6a3@a2 = 1 + a1a3 + a5a3a4 @a7 = 1 + a3 + a3a6a3a5@a3 = @a5 = @a6 = 0:The major properties of the di�erential are that @2 = 0 and @ lowers degree by 1; thereader may verify that these properties hold for the example above.15
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Figure 1-4: The Lagrangian projection of a �gure eight knot. Crossings and + quadrantsare labelled; � quadrants are omitted to reduce clutter.
Of course, the importance of the DGA stems from the fact that it gives a Legendrian-isotopy invariant. There is a concept of equivalence of DGAs under which two Legendrian-isotopic knots have equivalent DGAs; see Section 2.2. Although it is often not easy to tellwhen two DGAs are equivalent, Chekanov [Ch] introduced a set of polynomial invariants,derived from the DGA, which are straightforward to compute. He then used these Poincar�e-Chekanov polynomials (see Section 3.2 for their de�nition) to distinguish between two 52knots with identical classical invariants.Remark 1.3.3. Admissible decompositions. The Chekanov-Eliashberg DGA is not the onlyknown nonclassical invariant of Legendrian isotopy in standard contact R 3 . Chekanov andPushkar [CP] have developed another invariant based on so-called admissible decompo-sitions of fronts, inspired by the work of Eliashberg [E1]. It seems that the admissible-decomposition invariant is closely related to the Poincar�e-Chekanov polynomials; see [Fu].In particular, there is no known example of Legendrian knots which can be distinguishedthrough admissible decompositions but not through the Poincar�e-Chekanov polynomials.
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Chapter 2
Chekanov-Eliashberg DGA in thefront projection
This chapter is devoted to a reformulation of the Chekanov-Eliashberg DGA from theLagrangian projection to the more useful front projection. In Section 2.1, we introduceresolution, the technique used to translate from front projections to Lagrangian projections.We then de�ne the DGA for the front of a knot in Section 2.2, and discuss a particularlynice and useful case in Section 2.3. In Section 2.4, we review the main results concerningthe DGA from [Ch] and [ENS]. Section 2.5 discusses the adjustments that need to be madefor multi-component links.
2.1 Resolution of a frontGiven a front, we can �nd a Lagrangian projection which represents the same link throughthe following construction, which is also considered in [Fer] under the name \morsi�cation."De�nition 2.1.1. The resolution of a front is the link diagram obtained by resolving eachof the singularities in the front as shown in Figure 2-1.The usefulness of this construction is shown by the following result, which implies that reso-lution is a map from front projections to Lagrangian projections which preserves Legendrianisotopy.Proposition 2.1.2. The resolution of the front projection of any Legendrian link L is theLagrangian projection of another link which is Legendrian isotopic to L.Note that Proposition 2.1.2 is a bit stronger than the assertion from [Fer] that the regularisotopy type of the resolution is invariant under Legendrian isotopy of the front.Proof. We will deal only with a Legendrian knot K; the proof for multi-component links issimilar. It su�ces to distort the front K smoothly to a front K 0 so that the resolution ofK is the Lagrangian projection of the knot corresponding to K 0.

Figure 2-1: Resolving a front into the Lagrangian projection of a knot.
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Figure 2-2: A front projection for the left-handed trefoil (top) is distorted (middle) so thatthe corresponding Lagrangian projection (bottom), given by y = dz=dx, with the same xaxis as the middle diagram, is the resolution of the original front. The exceptional segmentsin the middle diagram appear as corners.
We chooseK 0 to have the following properties; see Figure 2-2 for an illustration. Supposethat there are at most k points in K with any given x coordinate. Outside of arbitrarilysmall \exceptional segments," K 0 consists of straight line segments. These line segmentseach have slope equal to some integer between 0 and k�1 inclusive; outside of the exceptionalsegments, for any given x coordinate, the slopes of the line segments at points with thatx coordinate are all distinct. The purpose of the exceptional segments is to allow the linesegments to change slopes, by interpolating between two slopes. When two line segmentsexchange slopes via exceptional segments, the line segment with higher z coordinate hashigher slope to the left of the exceptional segment, and lower slope to the right.It is always possible to construct such a distortion K 0. Build K 0 starting from the left; aleft cusp is simply two line segments of slope j and j+1 for some j, smoothly joined togetherby appending an exceptional segment to one of the line segments. Whenever two segmentsneed to cross, force them to do so by interchanging their slopes (again, with exceptionalsegments added to preserve smoothness). To create a right cusp between two segments,interchange their slopes so that they cross, and then append an exceptional segment justbefore the crossing to preserve smoothness.We obtain the Lagrangian projection of the knot corresponding to K 0 by using therelation y = dz=dx. This projection consists of horizontal lines (parallel to the x axis),outside of a number of crossings arising from the exceptional segments. These crossings canbe naturally identi�ed with the crossings and right cusps of K or K 0. In particular, right
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cusps in K become the crossings associated to a simple loop. It follows that the Lagrangianprojection corresponding to K 0 is indeed the resolution of K, as desired.
2.2 The DGA for fronts of knotsSuppose that we are given the front projection Y of an oriented Legendrian knot K. Tode�ne the Chekanov-Eliashberg DGA for Y , we simply examine the DGA for the resolutionof Y and \translate" this in terms of Y . In the interests of readability, we will concentrate ondescribing the DGA solely in terms of Y , invoking the resolution only when the translationis not obvious.The singularities of Y fall into three categories: crossings (nodes), left cusps, and rightcusps. Ignore the left cusps, and call the crossings and right cusps vertices, with labelsa1; : : : ; an (see Figure 2-3); then the vertices of Y are in one-to-one correspondence withthe crossings of the resolution of Y .As an algebra, the Chekanov-Eliashberg DGA of the front Y is de�ned to be the free,noncommutative algebra with unity A = Z[t; t�1]ha1; : : : ; ani over Z[t; t�1] generated bya1; : : : ; an. We wish to de�ne a grading on A, and a di�erential @ on A which lowers thegrading by 1.We �rst address the grading of A. For an oriented path 
 contained in the diagramY , de�ne c(
) to be the number of cusps traversed upwards, minus the number of cuspstraversed downwards, along 
. Note that this is the opposite convention from the one usedto calculate rotation number; if we consider Y itself to be an oriented closed curve, thenr(K) = �c(Y )=2.Let the degree of the indeterminate t be 2r(K). To grade A, it then su�ces to de�nethe degrees of the generators ai; we follow [ENS].De�nition 2.2.1. Given a vertex ai, de�ne the capping path 
i, a path in Y beginning andending at ai, as follows. If ai is a crossing, move initially along the segment of higher slopeat ai, in the direction of the orientation of Y ; then follow Y , not changing direction at anycrossing, until ai is reached again. If ai is a right cusp, then 
i is the empty path, if theorientation of Y traverses ai upwards, or the entirety of Y in the direction of its orientation,if the orientation of Y traverses ai downwards.De�nition 2.2.2. If ai is a crossing, then deg ai = c(
i). If ai is a right cusp, then deg aiis 1 or 1 � 2r(K), depending on whether the orientation of Y traverses ai upwards ordownwards, respectively.

a 1a 2

a 3

a 4a 7

a 6

a 5

z

x

Figure 2-3: The front projection of a �gure eight knot, with vertices labelled.
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We thus obtain a grading for A over Z. It will be useful to introduce the sign functionsgn v = (�1)deg v on pure-degree elements of A, including vertices of Y ; note that any rightcusp has negative sign.Example 2.2.3. In the �gure eight knot shown in Figure 2-3, a1; a2; a3; a4; a7 have degree1, while a5; a6 have degree 0. For an illustration of De�nition 2.2.2 for a knot of nonzerorotation number, see Remark 4.3.1.Remark 2.2.4. The Thurston-Bennequin number for K can be written as the di�erence be-tween the numbers of positive-sign and negative-sign vertices in Y . Since deg t = 2r(K),we conclude that the graded algebra A incorporates both classical Legendrian-isotopy in-variants.We next wish to de�ne the di�erential @ on A. As in [Ch], we de�ne @ai for a generatorai by considering a certain class of immersed disks in the diagram Y .De�nition 2.2.5. An admissible map on Y is an immersion from the two-disk D2 to R 2which maps the boundary of D2 into the knot projection Y , and which satis�es the followingproperties: the map is smooth except possibly at vertices and left cusps; the image of themap near any singularity looks locally like one of the diagrams in Figure 2-4, excepting thetwo forbidden ones; and, in the notation of Figure 2-4, there is precisely one initial vertex.
(counted twice)

other allowed singularities

initial vertices corner vertices

corner vertex

(downward)

forbidden singularities

Figure 2-4: Possible singularities in an admissible map, and their classi�cation. The shadedarea is the image of the map restricted to a neighborhood of the singularity; the heavy lineindicates the image of the boundary of D2. In two of the diagrams, the heavy line has beenshifted o� of itself for clarity. The diagram with heavy shading indicates that the imageoverlaps itself. The last two diagrams are forbidden in an admissible map.
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The singularities of an admissible map thus consist of one initial vertex, a number of cornervertices (possibly including some right cusps counted twice), and some other singularitieswhich we will ignore. One type of corner vertex, the \downward" corner vertex as labelledin Figure 2-4, will be important shortly in determining certain signs.Remark 2.2.6. Forbidden singularities. The possible singularities depicted in Figure 2-4 areall derived by considering the resolution of Y , but it is not immediately obvious why the twoforbidden singularities should be disallowed. To justify this, call a point p in the domainof an admissible map, and its image under the map, locally rightmost if p attains a localmaximum for the x coordinate of its image. (More sloppily, a point in the image of themap is locally rightmost if it locally maximizes x coordinate in the image.) Observe thatany locally rightmost point in the image of an admissible map must be the unique initialvertex of the map: this point must be a node or a right cusp, which cannot be a negativecorner vertex (cf. Figure 2-4). In particular, there must be a unique locally rightmost pointin the image. Of the two forbidden singularities from Figure 2-4, the left one is disallowedbecause the initial vertex is not rightmost, and the right one because there would be twolocally rightmost points.To each di�eomorphism class of admissible maps on Y , we will now associate a monomialin Z[t; t�1]ha1; : : : ; ani. Let f be a representative of a di�eomorphism class, and supposethat f has corner vertices at aj1 ; : : : ; aj` , counted twice where necessary, in counterclockwiseorder around the boundary ofD2, starting just after the initial vertex, and ending just beforereaching the initial vertex again. Then the monomial associated to f , and by extension tothe di�eomorphism class of f , is�(f) = (sgn f) t�n(f)aj1 � � � aj` ;where (sgn f) is the parity (+1 for even, �1 for odd) of the number of downward cornervertices of f of even degree, and the winding number n(f) is de�ned below.The image f(@D2), oriented counterclockwise, lifts to a collection of oriented paths inthe knot K. If ai is the initial vertex of f , then the lift of f(@D2), along with the lifts ofthe capping paths 
i, �
j1 ; : : : ;�
j` , form a closed cycle in K. We then set n(f) to be thewinding number of this cycle around K, with respect to the orientation of K.De�nition 2.2.7. Given a generator ai, we de�ne
@ai = 8><>:

P�(f) if ai is a crossing1 +P�(f) if ai is a right cusp oriented upwardst�1 +P�(f) if ai is a right cusp oriented downwards,where the sum is over all di�eomorphism classes of admissible maps f with initial vertexat ai. We extend the di�erential to the algebra A by setting @(Z[t; t�1 ]) = 0 and imposingthe signed Leibniz rule @(vw) = (@v)w + (sgn v)v(@w).Remark 2.2.8. Consistency of de�nitions. The power of t in the de�nition of the monomial�(f) has been taken directly from the de�nition in [ENS] of @ for the resolution of Y . Itis easy to check that the signs also correspond to the signs in [ENS], after we replace ai by�ai for each ai which is \right-pointing"; that is, near which the knot is locally orientedfrom left to right for both strands.Remark 2.2.9. Unoriented knots. De�nition 2.2.7 depends on a choice of orientation of theknot K. For an unoriented knot, we may similarly de�ne the di�erential without the powers21



of t; the DGA is then an algebra over Z graded over Z=(2r(K)), still a lifting of Chekanov'soriginal DGA over Z=2.Remark 2.2.10. Stabilizations. If K is a stabilization, then it is easy to see that there is anai such that @ai = 1 or @ai = t�1. In this case, @(aj � ai@aj) = 0 or @(aj � tai@aj) = 0 forall j, and the DGA collapses modulo tame isomorphisms (see Section 2.4). This was �rstnoted in [Ch, x11.2].Example 2.2.11. We may compute (somewhat laboriously) that the front in Figure 2-3satis�es@a1 = 1 + a6 � t2a6a4a6a7 � t2(1� ta6a5)a3a6a7 + ta6a2(1� ta6 � t2a7a4a6)a7@a2 = 1� ta5a6@a3 = t�1 � a6 � ta6a7a4@a4 = @a5 = @a6 = @a7 = 0:See Figure 2-5 for a depiction of two of the admissible maps counted in @a1.To illustrate the calculation of the sign and power of t associated to an admissible map,consider the term t3a6a5a3a6a7 in @a1 above. The sign of this term is (� sgn a5)(� sgn a6) =+1; see Example 2.2.3. To calculate the power of t, we count, with orientation, the numberof times the cycle corresponding to this map passes through a1. The boundary of the
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Figure 2-5: The admissible maps corresponding to the terms a6 (top) and t3a6a5a3a6a7(bottom) in @a1 for the front from Figure 2-3. The heavy lines indicate the image of theboundary of D2; the heavy shading indicates where the images overlap themselves. Forclarity, the images of the maps are redrawn to the right.
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immersed disk passes through a1, contributing 1; 
1 trivially does not pass through a1,contributing 0; and �
3;�
6;�
7 pass through a1, while �
5 does not, contributing a totalof �4. It follows that the power of t is t�(1+0�4) = t3.
2.3 Simple frontsSince the behavior of an admissible map near a right cusp can be complicated, our formu-lation of the di�erential algebra may seem no easier to compute than Chekanov's. Thereis, however, one class of fronts for which the di�erential is particularly easy to compute.De�nition 2.3.1. A front is simple if it is smoothly isotopic to a front all of whose rightcusps have the same x coordinate.Any front can be Legendrian-isotoped to a simple front: \push" all of the right cusps to theright until they share the same x coordinate. (In the terminology of Figure 1-1, a series ofIIb moves can turn any front into a simple front.)For a simple front, the boundary of any admissible map must begin at a node or rightcusp (the initial vertex), travel leftwards to a left cusp, and then travel rightwards again tothe initial vertex. Outside of the initial vertex and the left cusp, the boundary can only havevery speci�c corner vertices: each corner vertex must be a crossing, and, in a neighborhoodof each of these nodes, the image of the map must only occupy one of the four regionssurrounding the crossing. In particular, the map is an embedding, not just an immersion.Example 2.3.2. It is easy to calculate the di�erential for the simple-front version of the�gure eight knot given in Figure 2-6:@a1 = 1 + a6 + ta10a5 @a4 = t�1 + a8a7 � a9a6 � ta9a10a5@a2 = 1� ta9a10 @a5 = a7 + a11 + ta11a8a7@a3 = t�1 � a10 � ta10a11a8 @a6 = �ta10a7 � ta10a11 � t2a10a11a8a7@a7 = @a8 = @a9 = @a10 = @a11 = 0:For the signs, note that a1; a2; a3; a4; and a8 have degree 1, a7 and a11 have degree �1, andthe other vertices have degree 0; for the powers of t, note that 
3, 
4, 
5, 
6, 
7, 
10, and
11 pass through a1, while the other capping paths do not.
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a 11Figure 2-6: A simple-front version of the front from Figure 2-3, with two admissible mapsdrawn. The top shaded region corresponds to the term ta10a5 in @a1; the bottom shadedregion corresponds to the term �ta10a7 in @a6.
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2.4 Properties of the DGAIn this section, we summarize the properties of the Chekanov-Eliashberg DGA. These resultswere originally proven over Z=2 in [Ch], and then extended over Z[t; t�1 ] in [ENS]. Proofsare provided, in the front-projection setup, in Appendix A; see also [ENS] for Lagrangian-projection proofs.Proposition 2.4.1 ([Ch],[ENS]). For the DGA associated to a Legendrian knot, @ lowersdegree by 1.Proposition 2.4.2 ([Ch],[ENS]). For the DGA associated to a Legendrian knot, @2 = 0.
To state that the DGA is invariant under Legendrian isotopy, we need to recall severalde�nitions from [Ch] or [ENS].An (algebra) automorphism of a graded free algebra Z[t; t�1]ha1; : : : ; ani is elementaryif it preserves grading and sends some ai to ai + v, where v does not involve ai, and�xes the other generators aj ; j 6= i. A tame automorphism of Z[t; t�1 ]ha1; : : : ; ani is anycomposition of elementary automorphisms; a tame isomorphism between two free algebrasZ[t; t�1]ha1; : : : ; ani and Z[t; t�1]hb1; : : : ; bni is a grading-preserving composition of a tameautomorphism and the map sending ai to bi for all i. Two DGAs are then tamely isomorphicif there is a tame isomorphism between them which maps the di�erential on one to thedi�erential on the other.Let E be a DGA with generators e1 and e2, such that @e1 = �e2, @e2 = 0, both e1 ande2 have pure degree, and deg e1 = deg e2 + 1. Then an algebraic stabilization1 of a DGA(A = Z[t; t�1]ha1; : : : ; ani; @) is a graded coproduct(S(A); @) = (A; @)q (E; @) = (Z[t; t�1]ha1; : : : ; an; e1; e2i; @);with di�erential and grading induced from A and E. Finally, two DGAs are equivalent ifthey are tamely isomorphic after some (possibly di�erent) number of (possibly di�erent)algebraic stabilizations of each.We can now state the main invariance result.Theorem 2.4.3 ([Ch],[ENS]). Fronts corresponding to Legendrian-isotopic knots haveequivalent DGAs.Corollary 2.4.4 ([Ch],[ENS]). The graded homology of the DGA associated to a Legen-drian knot is invariant under Legendrian isotopy.

2.5 The DGA for fronts of linksIn this section, we describe the modi�cations of the de�nition of the Chekanov-EliashbergDGA necessary for Legendrian links in standard contact R 3 . Here the DGA has an in�nitefamily of gradings, as opposed to one, and is de�ned over a ring more complicated thanZ[t; t�1]. The DGA for links also includes some information not found for knots.Let L be an oriented Legendrian link, with components L1; : : : ; Lk; in this section,for ease of notation, we will also use L;L1; : : : ; Lk to denote the corresponding fronts.1This is not related to the stabilizations of Figure 1-2.24



Chekanov's original de�nition [Ch] of the DGA for L gives an algebra over Z=2 gradedover Z=(2r(L)), where r(L) = gcd(r(L1); : : : ; r(Lk)); we will extend this to an algebraover Z[t1 ; t�11 ; : : : ; tk; t�1k ] graded over Z, and our set of gradings will be more re�ned thanChekanov's. We will also discuss an additional structure on the DGA discovered by K.Michatchev [Mi].As in Section 2.2, let a1; : : : ; an be the vertices (crossings and right cusps) of L. Weassociate to L the algebra A = Z[t1 ; t�11 ; : : : ; tk; t�1k ]ha1; : : : ; ani;with di�erential and grading to be de�ned below.For each crossing ai, letNu(ai) and Nl(ai) denote neighborhoods of ai on the two strandsintersecting at ai, so that the slope of Nl(ai) is greater than the slope of Nu(ai); then Nu(ai)is lower than Nl(ai) in y coordinate, since the y axis points into the page. If ai is a rightcusp, de�ne Nu(ai) = Nl(ai) to be a neighborhood of ai in L. For any vertex ai, we maythen de�ne two numbers u(ai) and l(ai), the indices of the link components containingNu(ai) and Nl(ai), respectively.For each j = 1; : : : ; k, �x a base point pj on Lj , away from the singularities of L, sothat Lj is oriented from left to right in a neighborhood of pj . To a crossing ai, we associatetwo capping paths 
ui and 
li: 
ui is the path beginning at pu(ai) and following Lu(ai) in thedirection of its orientation until ai is reached through Nu(ai); 
li is the analogous path inLl(ai) beginning at pl(ai) and ending at ai through Nl(ai). (If u(ai) = l(ai), then one of 
uiand 
li will contain the other.) Note that, by this de�nition, when ai is a right cusp, 
ui and
li are both the path beginning at pu(ai) = pl(ai) and ending at ai.De�nition 2.5.1. For (�1; : : : ; �k�1) 2 Zk�1 , we may de�ne a Z grading on A by
deg ai = (1 if ai is a right cuspc(
ui )� c(
li) + 2�u(ai) � 2�l(ai) if ai is a crossing,where we set �k = 0. We will only consider gradings on A obtained in this way.The set of gradings on A is then indexed by Zk�1 . Our motivation for including preciselythis set of gradings is given by the following easily proven observation.Lemma 2.5.2. The collection of possible gradings on A is independent of the choices ofthe points pj.Remark 2.5.3. Signs. We may de�ne the sign function on vertices, as usual, by sgn ai =(�1)deg ai . This is well-de�ned and independent of the choice of grading: sgn ai = �1 if aiis a right cusp; sgn ai = 1 if ai is a crossing with both strands pointed in the same direction(either both to the left or both to the right); and sgn ai = �1 if ai is a crossing with strandspointed in opposite directions. Note that tb(L) =Pni=1 sgn ai.Remark 2.5.4. If ai is contained in component Lj , the degree of ai may di�er from howwe de�ned it in De�nition 2.2.2 with Lj a knot by itself. It is easy to calculate that thedi�erence between the two degrees will always be either 0 or 2r(Lj).The di�erential of a generator ai is still given by De�nition 2.2.7, but we must nowrede�ne �(f) for an admissible map f . Suppose that f has initial vertex ai and cornervertices ai1 ; : : : ; aim . Then the lift of f(@D2) to L, together with the lifts of 
ui ; �
li;25



�
ui1 ; : : : ;�
uim , 
li1 ; : : : ; 
lim ; form a closed cycle in L. Let the winding number of this cyclearound component Lj be nj(f). Also, de�ne sgn f , as before, to be the parity of the numberof downward corner vertices of f with positive sign.We now set �(f) = (sgn f) t�n1(f)1 � � � t�nk(f)k ai1 � � � aim :The di�erential @ can then be de�ned on A essentially as in De�nition 2.2.7, except thatwe now have @(Z[t1 ; t�11 ; : : : ; tk; t�1k ]) = 0, and
@ai = (P�(f) if ai is a crossing1 +P�(f) if ai is a right cusp.Note that the signed Leibniz rule does not depend on the choice of base points pj , since, byRemark 2.5.3, the signs (sgn ai) are independent of this choice. Also, because of a di�erentchoice of capping paths, we always add 1 to a right cusp, rather than adding either 1 ort�1, as in De�nition 2.2.7.Remark 2.5.5. There is a simple way to calculate nj(f): it is the signed number of timesf(@D2) crosses pj . Indeed, the winding number of the appropriate cycle around Lj is thesigned number of times that it crosses a point on Lj just to the left of pj. No cappingpath 
ui or 
li, however, crosses this point. Hence nj(f) counts the number of times f(@D2)crosses a point just to the left of pj ; we could just as well consider pj instead of this point.We next examine the e�ect of changing the base points pj on the di�erential @. Consideranother set of base points ~pj, giving rise to capping paths ~
ui ; ~
li, and let �j be the orientedpath in Lj from p0j to pj. Then

~
ui � 
ui = (�u(ai); Nu(ai) � �u(ai)�u(ai) � Lu(ai); Nu(ai) 6� �u(ai);and similarly for ~
li � 
li. We conclude the following result.Lemma 2.5.6. The di�erential on A, calculated with base points ~pj, is related to the dif-ferential calculated with pj, by intertwining with the following automorphism on A:
ai 7!

8>>>><>>>>:
ai; Nu(ai) � �u(ai) and Nl(ai) � �l(ai)t�1l(ai)ai; Nu(ai) � �u(ai) and Nl(ai) 6� �l(ai)tu(ai)ai; Nu(ai) 6� �u(ai) and Nl(ai) � �l(ai)tu(ai)t�1l(ai)ai; Nu(ai) 6� �u(ai) and Nl(ai) 6� �l(ai).

Example 2.5.7. Consider the link L in Figure 2-7, with base points as shown. To give agrading to the DGA on L, choose (�1; �2) 2 Z2 . We calculate the degree of a4 as an example:u(a4) = 2, l(a4) = 1, c(
u4 ) = 0, and c(
l4) = �1, and so deg a4 = 1 + 2�2 � 2�1. The fulllist of degrees is as follows:
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Figure 2-7: An oriented link L with components L1, L2, and L3, with corresponding basepoints p1, p2, and p3 marked but not labelled.
deg a1 = 1 deg a4 = 1 + 2�2 � 2�1 deg a7 = �1 + 2�1deg a2 = 1 deg a5 = 1� 2�2 deg a8 = �1 + 2�1 � 2�2deg a3 = 1 deg a6 = 1� 2�1 deg a9 = �1 + 2�2:The di�erential @ is then given by@a1 = 1 + t1 + t1t�12 a8a4 + t1t�13 a7a6 @a4 = t2t�13 a9a6 @a7 = a8a9@a2 = 1 + t2 + t2t�13 a9a5 + a4a8 @a5 = a6a8 @a8 = 0@a3 = 1 + t3 + a5a9 + a6a7 @a6 = 0 @a9 = 0:We can now state several properties of the link DGA, the analogues of the results forknots in Section 2.4.Proposition 2.5.8. If (A; @) is a DGA associated to the link L, then @2 = 0, and @ lowersdegree by 1 for any of the gradings of A.The main invariance result requires a slight tweaking of the de�nitions. De�ne elemen-tary and tame automorphisms as in Section 2.4; now, however, let a tame isomorphismbetween algebras generated by a1; : : : ; an and b1; : : : ; bn be a grading-preserving composi-tion of a tame automorphism and a map sending ai to �Qkm=1 t�k;mm � bi, for any set of integersf�k;mg. (This de�nition is motivated by Lemma 2.5.6.) De�ne algebraic stabilization andequivalence as before.Proposition 2.5.9. If L and L0 are Legendrian-isotopic oriented links, then for any grad-ing of the DGA for L, there is a grading of the DGA for L0 so that the two DGAs areequivalent.The proofs of Propositions 2.5.8 and 2.5.9 will be omitted here, as they are simply variantson the proofs of Propositions 2.4.1 and 2.4.2 and Theorem 2.4.3, given in Appendix A; seealso [Ch].Remark 2.5.10. Allowed gradings. Our set of gradings for A is more restrictive than the setof \admissible gradings" postulated in [Ch]. To see this, we �rst translate our criteria forgradings to the Lagrangian-projection picture, and then compare with Chekanov's originalcriteria.
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Consider a Legendrian link L with components L1; : : : ; Lk. By perturbing L slightly, wemay assume that the crossings of �xy(L) are orthogonal, where �xy is the projection map(x; y; z) 7! (x; y); as usual, label these crossings a1; : : : ; an. Choose neighborhoods Nu(ai)and Nl(ai) in L of the two points mapping to ai under �xy, so that Nu(ai) lies above Nl(ai)in z coordinate, and let u(ai) and l(ai) be the indices of the link components on which theseneighborhoods lie.For each j, choose a point pj on Lj , and let �j be an angle, measured counterclockwise,from the positive x axis to the oriented tangent to Lj at pj; note that �j is only well-de�nedup to multiples of 2�. Let ru(ai) be the counterclockwise rotation number (the number ofrevolutions made) for the path in �(Lu(ai)) beginning at pu(ai) and following the orientationof Lu(ai) until ai is reached via Nu(ai); similarly de�ne rl(ai). Then the gradings for theDGA of L are given by choosing (�1; : : : ; �k�1) 2 Zk�1 and settingdeg ai = 2(rl(ai)� ru(ai)) + (�l(ai) � �u(ai))=� + 2�u(ai) � 2�l(ai) � 1=2:By comparison, the allowed degrees in [Ch] are given bydeg ai = 2(rl(ai)� ru(ai)) + (�l(ai) � �u(ai))=� + �u(ai) � �l(ai) � 1=2:The di�erence arises from the fact that Chekanov never uses the orientations of the linkcomponents; this forces �l(ai) and �r(ai) to be well-de�ned only up to integer multiples of �,rather than 2�.We now discuss an additional structure on the DGA for a link L, inspired by [Mi]. Moreprecisely, we will describe a variant of the relative homotopy splitting from [Mi]; our variantwill split something which is essentially a submodule of the DGA into k2 pieces which areinvariant under Legendrian isotopy.De�nition 2.5.11. For j1 6= j2 between 1 and k, inclusive, de�ne �j1j2 to be the moduleover Z[t1 ; t�11 ; : : : ; tk; t�1k ] generated by words of the form ai1 � � � aim , with u(ai1) = j1;l(aim) = j2, and u(aip+1) = l(aip) for 1 � p � m � 1. If j1 = j2 = j, then let �j1j2 be themodule generated by such words, along with an indeterminate ej. Finally, let � = ��j1j2 .The indeterminates ej will replace the 1 terms in the de�nition of @; see below. Note thatai 2 �u(ai)l(ai).Although � itself is not an algebra, we have the usual multiplication map �j1j2��j2j3 !�j1j3 , given on generators by concatenation, once we stipulate that the ej 's act as theidentity.Our introduction of � is motivated by the fact that @ai is essentially in �u(ai)l(ai) for alli. De�ne @0ai as follows: if u(ai) 6= l(ai), then @0ai = @ai; if u(ai) = l(ai), then @0ai is @ai,except that we replace any 1 or 2 term in @ai by eu(ai) or 2eu(ai). (It is easy to see thatthese are the only possible terms in @ai which involve only the tj 's and no am's.)Lemma 2.5.12. @0ai 2 �u(ai)l(ai) for all i.Proof. For a term in @ai of the form ai1 : : : aik , where we exclude powers of tj 's, we wishto prove that u(ai1) = u(ai), l(aik) = l(ai), and u(aip+1) = l(aip) for all p. Considerthe boundary of the map which gives the term ai1 : : : aik . By de�nition, the portion ofthis boundary connecting aip to aip+1 belongs to link component l(aip) on one hand, andu(aip+1) on the other. We similarly �nd that u(ai1) = u(ai) and l(aik) = l(ai).
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De�nition 2.5.13. The di�erential link module of L is (�; @0), where we have de�ned @0aiabove, and we extend @0 to � by applying the signed Leibniz rule and setting @0ej = 0 forall j. A grading for � is one inherited from the DGA of L, with deg ej = 0 for all j.We may de�ne (grading-preserving) elementary and tame automorphisms and tameisomorphisms for di�erential link modules as for DGAs, with the additional stipulation thatall maps must preserve the link module structure by preserving �j1j2 for all j1; j2. Similarly,we may de�ne an algebraic stabilization of a di�erential link module, with the additionalstipulation that the two added generators both belong to the same �j1j2 . As usual, we thende�ne two di�erential link modules to be equivalent if they are tamely isomorphic aftersome number of algebraic stabilizations. We omit the proof of the following result, whichagain is simply a variant on the proofs given in Appendix A.Proposition 2.5.14. If L and L0 are Legendrian-isotopic oriented links, then for any grad-ing of the di�erential link module for L, there is a grading of the di�erential link modulefor L0 so that the two are equivalent.In this dissertation, we will not use the full strength of the di�erential link module. Wewill, however, apply �rst-order Poincar�e-Chekanov polynomials derived from the di�erentiallink module; we now describe these polynomials, �rst mentioned in [Mi]. For the de�nitionof augmentations for knots, and background on Poincar�e-Chekanov polynomials, please referto Section 3.2.Assume that r(L1) = � � � = r(Lk) = 0, and let � be the di�erential link module for L,with some �xed grading. We consider the DGAs for L and L1; : : : ; Lk over Z=2; that is, settj = 1 for all j, and reduce modulo 2.De�nition 2.5.15. Suppose that, when considered alone as a knot, the DGA for each ofL1; : : : ; Lk has an augmentation "1; : : : ; "k. Extend these augmentations to all vertices aiof L by setting
"(ai) = ("u(ai)(ai) if u(ai) = l(ai)0 otherwise.We de�ne an augmentation of L to be any function " obtained in this way.An augmentation ", as usual, gives rise to a �rst-order Poincar�e-Chekanov polynomialP ";1(�); we may say, a bit imprecisely, that this polynomial splits into k2 polynomialsP ";1j1j2(�), corresponding to the pieces in �j1j2 .The polynomials P ";1jj (�) are precisely the polynomials P "j ;1(�) for each individual linkcomponent Lj . For practical purposes, we can de�ne P ";1j1j2(�) for j1 6= j2 as follows. Forai 2 �j1j2 , de�ne @(1)" ai to be the image of @ai under the following operation: discard allterms in @ai containing more than one am with u(am) 6= l(am), and replace each am in @aiby "(am) whenever u(am) = l(am). If we write Vj1j2 as the vector space over Z=2 generatedby fai 2 �j1j2g, then @(1)" preserves Vj1j2 and �@(1)" �2 = 0. We may then set P ";1j1j2(�) to bethe Poincar�e polynomial of @(1)" on Vj1j2 , i.e., the polynomial in � whose �i coe�cient is thedimension of the i-th graded piece of (ker @(1)" )=(im@(1)" ).We may also de�ne higher-order Poincar�e-Chekanov polynomials P ";nj1j2(�) by examiningthe action of @0 on �j1j2 , but we will not need these here.
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The following result, which follows directly from Proposition 2.5.14 and Chekanov'scorresponding result from [Ch], will be used extensively in Chapter 4.Theorem 2.5.16. Suppose that L and L0 are Legendrian-isotopic oriented links. Then, forany given grading and augmentation of the DGA for L, there is a grading and augmentationof the DGA for L0 so that the �rst-order Poincar�e-Chekanov polynomials P ";1j1j2 for L andL0 are equal for all j1; j2.Remark 2.5.17. While P ";1jj (�1) = tb(Lj) as usual, we also have P ";1j1j2(�1) = lk(Lj1 ; Lj2),the linking number of Lj1 and Lj2 , for j1 6= j2. Also, we have Pj1;j2 P ";1j1j2(�1) = tb(L).We conclude that the �rst-order Poincar�e-Chekanov polynomials incorporate the classicalinvariants for oriented links (see Section 1.2.Example 2.5.18. For the link from Example 2.5.7, an augmentation is any map with "(ai) =0 for i � 4. Then @(1)" is identically zero, and the �rst-order Poincar�e-Chekanov polynomialssimply measure the degrees of the ai. More precisely, for a choice of grading (�1; �2) 2 Z2 ,we have P ";111 (�) = � P ";121 (�) = �1+2�2�2�1 P ";131 (�) = �1�2�1P ";112 (�) = ��1+2�1�2�2 P ";122 (�) = � P ";132 (�) = �1�2�2P ";113 (�) = ��1+2�1 P ";123 (�) = ��1+2�2 P ";133 (�) = �:
Remark 2.5.19. Unoriented links. For unoriented links, we simply expand the set of allowedgradings (�1; : : : ; �k�1) to allow half-integers, as in [Ch]. Indeed, a grading of half-integers(�1; : : : ; �k�1) corresponds to changing the original orientation of L by either reversing theorientation of fLj : 2�j oddg, or reversing the orientations of Lk and fLj : 2�j eveng. Wemay deduce this by examining how the capping paths and degrees change when we changethe orientation (and hence base point) of one link component Lj .
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Chapter 3
The characteristic algebra
We would like to use the Chekanov-Eliashberg DGA to distinguish between Legendrian iso-topy classes of knots. Unfortunately, it is often hard to tell when two DGAs are equivalent.In particular, the homology of a DGA is generally in�nite-dimensional and di�cult to grasp;this prevents us from applying Corollary 2.4.4 directly.Until now, the only known \computable" Legendrian invariants|that is, nonclassicalinvariants which can be used in practice to distinguish between Legendrian isotopy classes ofknots|were the �rst-order Poincar�e-Chekanov polynomial and its higher-order analogues.However, the Poincar�e-Chekanov polynomial is not de�ned for all Legendrian knots, nor isit necessarily uniquely de�ned; in addition, as we shall see, there are many nonisotopic knotswith the same polynomial. The higher-order polynomials, on the other hand, are di�cultto compute, and have not yet been successfully used to distinguish Legendrian knots.In Section 3.1, we introduce the characteristic algebra, a Legendrian invariant derivedfrom the DGA, which is nontrivial for most, if not all, Legendrian knots with maximalThurston-Bennequin number. The characteristic algebra encodes the information from atleast the �rst- and second-order Poincar�e-Chekanov polynomials, as we explain in Sec-tion 3.2. We will demonstrate the e�cacy of our invariant, through examples, in Chapter 4.Although the results of this chapter hold for links as well, we will con�ne our attentionto knots for simplicity, except in Remark 3.1.5.
3.1 De�nition of the characteristic algebraThe de�nition of our new invariant is quite simple.De�nition 3.1.1. Let (A; @) be a DGA over Z[t; t�1], where A = Z[t; t�1]ha1; : : : ; ani, andlet I denote the (two-sided) ideal in A generated by f@ai j 1 � i � ng. The characteristicalgebra C(A; @) is de�ned to be the algebra A=I, with grading induced from the grading onA.De�nition 3.1.2. Two characteristic algebras A1=I1 and A2=I2 are tamely isomorphic ifwe can add some number of generators to A1 and the same generators to I1, and similarlyfor A2 and I2, so that there is a tame isomorphism between A1 and A2 sending I1 to I2.In particular, tamely isomorphic characteristic algebras are isomorphic as algebras. Strictlyspeaking, De�nition 3.1.2 only makes sense if we interpret the characteristic algebra as apair (A; I) rather than as A=I, but we will be sloppy with our notation. Recall that wede�ned tame isomorphism between free algebras in Section 2.4.31



A stabilization of (A; @), as de�ned in Section 2.4, adds two generators e1; e2 to A andone generator e2 to I; thus A=I changes by adding one generator e1 and no relations.De�nition 3.1.3. Two characteristic algebras A1=I1 and A2=I2 are equivalent if they aretamely isomorphic, after adding a (possibly di�erent) �nite number of generators (but noadditional relations) to each.Theorem 3.1.4. Legendrian-isotopic knots have equivalent characteristic algebras.Proof. Let (A; @) be a DGA with A = Z[t; t�1]ha1; : : : ; ani. Consider an elementary auto-morphism of A sending aj to aj + v, where v does not involve aj ; since @(aj + v) is in I,it is easy to see that this automorphism descends to a map on characteristic algebras. Weconclude that tamely isomorphic DGAs have tamely isomorphic characteristic algebras. Onthe other hand, equivalence of characteristic algebras is de�ned precisely to be preservedunder stabilization of DGAs.Remark 3.1.5. Characteristic module for links. In the case of a link, we may also de�nethe characteristic module arising from the di�erential link module (�; @0) introduced inSection 2.5. This is the module over Z[t1 ; t�11 ; : : : ; tk; t�1k ] generated by �, modulo therelations v1(@0ai)v2 = 0 : v1 2 �j1j2 ; ai 2 �j2j3 ; v2 2 �j3j4 for some j1; j2; j3; j4:De�ne equivalence of characteristic modules similarly to equivalence of characteristic alge-bras, except that replacing a generator ai by t�1u(ai)ai or t�1l(ai)ai is allowed. Then Legendrian-isotopic links have equivalent characteristic modules. An approach along these lines is usedin [Mi] to distinguish between particular links.
3.2 Relation to the Poincar�e-Chekanov polynomial invari-antsIn this section, we work over Z=2 rather than over Z[t; t�1]; simply set t = 1 and reducemodulo 2. Thus we consider the DGA (A; @) of a Legendrian knot K over Z=2, graded overZ=(2r(K)); let C = A=I be its characteristic algebra.We �rst review the de�nition of the Poincar�e-Chekanov polynomials. The followingterm is taken from [EFM].De�nition 3.2.1. Let (A; @) be a DGA over Z=2. An algebra map " : A ! Z=2 is anaugmentation if "(1) = 1, " � @ = 0, and " vanishes for any element in A of nonzero degree.Given an augmentation " of (A; @), write A" = ker "; then @ maps (A")n into itselffor all n, and thus @ descends to a map @(n) : A"=An+1" ! A"=An+1" . We can breakA"=An+1" into graded pieces Pi2Z=(2r(K))C(n)i , where C(n)i denotes the piece of degree i.Write �(n)i = dimZ=2 ker(@(n) : C(n)i ! C(n)i�1) and �(n)i = dimZ=2 im(@(n) : C(n)i+1 ! C(n)i ), sothat �(n)i � �(n)i is the dimension of the i-th graded piece of the homology of @(n).De�nition 3.2.2. The Poincar�e-Chekanov polynomial of order n associated to an augmen-tation " of (A; @) is P";n(�) =Pi2Z=(2r(K)) ��(n)i � �(n)i ��i.
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Note that augmentations of a DGA do not always exist.The main result of this section states that we can recover some Poincar�e-Chekanovpolynomials from the characteristic algebra. To do this, we need one additional bit ofinformation, besides the characteristic algebra.De�nition 3.2.3. Let 
i be the number of generators of degree i of a DGA (A; @) gradedover Z=(2r(K)). Then the degree distribution 
 : Z=(2r(K)) ! Z�0 of A is the map i 7! 
i.Clearly, the degree distribution can be immediately computed from a diagram of K bycalculating the degrees of the vertices of K.We are now ready for the main result of this section. Note that the following propositionuses the isomorphism class, not the equivalence class, of the characteristic algebra.Proposition 3.2.4. The set of �rst- and second-order Poincar�e-Chekanov polynomials forall possible augmentations of a DGA (A; @) is determined by the isomorphism class of thecharacteristic algebra C and the degree distribution of A.Before we can prove Proposition 3.2.4, we need to establish a few ancillary results.Our starting point is the observation that there is a one-to-one correspondence betweenaugmentations and maximal ideals ha1 + c1; : : : ; an + cni � A containing I and satisfyingci = 0 if deg ai 6= 0.Fix an augmentation ". We �rst assume for convenience that " = 0; then I �M , whereM is the maximal ideal ha1; : : : ; ani. For each i, write@ai = @1ai + @2ai + @3ai;where @1ai is linear in the aj , @2ai is quadratic in the aj , and @3ai contains terms of thirdor higher order. The following lemma writes @1 in a standard form.Lemma 3.2.5. After a tame automorphism, we can relabel the ai as a1; : : : ; ak; b1; : : : ; bk,c1; : : : ; cn�2k for some k, so that @1ai = bi and @1bi = @1ci = 0 for all i.Proof. For clarity, we �rst relabel the ai as ~ai. We may assume that the ~ai are ordered sothat @~ai contains only terms involving ~aj , j < i; see [Ch]. Let i1 be the smallest numberso that @1~ai1 6= 0. We can write @1~ai1 = ~aj1 + v1, where j1 < i1 and the expression v1 doesnot involve ~aj1 . After applying the elementary isomorphism ~aj1 7! ~aj1 + v1, we may assumethat v1 = 0 and @1~ai1 = ~aj1 .For any ~ai such that @1~ai involves ~aj1 , replace ~ai by ~ai+~ai1 . Then @1~ai does not involve~aj1 unless i = i1; in addition, no @1~ai can involve ~ai1 , since then @21~ai would involve ~aj1 . Seta1 = ~ai1 and b1 = ~ai1 ; then @1a1 = b1 and @1~ai does not involve a1 or b1 for any other i.Repeat this process with the next smallest ~ai2 with @1~ai2 6= 0, and so forth. At theconclusion of this inductive process, we obtain a1; : : : ; ak; b1; : : : ; bk with @1ai = bi (and@1bi = 0), and the remaining ~ai satisfy @1~ai = 0; relabel these remaining generators withc's. Now assume that we have relabelled the generators of A in accordance with Lemma 3.2.5.Lemma 3.2.6. �(1)` is the number of bj of degree `, while �(2)` � �(1)` is the dimension ofthe degree ` subspace of the vector space generated byf@2bi; @2ci; aibj + biaj ; bibj ; bicj; cibjg;where i; j range over all possible indices. 33



Proof. The statement for �(1)` is obvious. To calculate �(2)` � �(1)` , note that the image of@(2) in A=A3 is generated by @ai = bi + @2ai, @bi = @2bi, @ci = @2ci, @(aiaj) = aibj + biaj ,@(aibj) = bibj , @(biaj) = bibj , @(aicj) = bicj , and @(ciaj) = cibj .We wish to write �(n)` in terms of C, but we �rst pass through an intermediate step. LetN (n) be the image of I in M=Mn+1, and let �(n)` be the dimension of the degree ` part ofN (n). Lemma 3.2.8 below relates �(n)` to �(n)` for n = 1; 2.Lemma 3.2.7. �(1)` is the number of bi of degree `, while �(2)` � �(1)` is the dimension of thedegree ` subspace of the vector space generated byf@2bi; @2ci; aibj ; biaj ; bibj ; bicj ; cibjg;where i; j range over all possible indices.Proof. This follows immediately from the fact that I is generated by f@ai; @bi; @cig.Lemma 3.2.8. �(1)` = �(1)` and �(2)` = �(2)` �P`0 �`0�`�`0�1.Proof. We use Lemmas 3.2.6 and 3.2.7. The �rst equality is obvious. For the secondequality, we claim that, for �xed i and j, aibj only appears in conjunction with biaj in theexpressions @2bm and @2cm, for arbitrary m. It then follows that �(2)` � �(2)` is the numberof aibj of degree `, which is P`0 �`0�`�`0�1.To prove the claim, suppose that @2bm contains a term aibj . Since @22bm = 0 and@2(aibj) = bibj , there must be another term in @2bm which, when we apply @2, gives bibj ;but this term can only be biaj . The same argument obviously holds for @2cm.Now let " be any augmentation, and let M" = ha1 + "(a1); : : : ; an + "(an)i be thecorresponding maximal ideal in A. If we de�ne N (n) and �(n)` as above, except with Mreplaced byM", then Lemma 3.2.8 still holds. We are now ready to prove Proposition 3.2.4.Proof of Proposition 3.2.4. Note that(M"=Mn+1" )=N (n) �= (M"=I)=(M"=I)n+1;the characteristic algebra C = A=I and the choice of augmentation " determine the righthand side. On the other hand, the dimension of the degree ` part of M"=Mn+1" is 
` ifn = 1, and 
`+P`0 
`0
`�`0 if n = 2. It follows that we can calculate f�(1)` g and f�(2)` g fromC, ", and 
.Fix n = 1; 2. By Lemma 3.2.8, we can then calculate f�(n)` g and hence the Poincar�e-Chekanov polynomialP";n(�) = X̀�(�(n)` + �(n)`�1)� �(n)` � �(n)`�1��`:
Letting " vary over all possible augmentations yields the proposition.Remark 3.2.9. Another set of invariants, similar to the Poincar�e-Chekanov polynomials, areobtained by ignoring the grading of the DGA, and considering ungraded augmentations.In this case, the invariants are a set of integers, rather than polynomials, in each order. A
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proof similar to the one above shows that the �rst- and second-order ungraded invariantsare determined by the characteristic algebra.Remark 3.2.10. The situation for higher-order Poincar�e-Chekanov polynomials seems moredi�cult; we tentatively make the following conjecture.Conjecture 3.2.11. The isomorphism class of C and the degree distribution of A determinethe Poincar�e-Chekanov polynomials in all orders.Remark 3.2.12. In practice, we apply Proposition 3.2.4 as follows. Given two DGAs, stabi-lize each with the appropriate number and degrees of stabilizations so that the two resultingDGAs have the same degree distribution. If these new DGAs have isomorphic characteristicalgebras, then they have the same �rst- and second-order Poincar�e-Chekanov polynomials(if augmentations exist). If not, then we can often see that their characteristic algebrasare not equivalent, and so the original DGAs are not equivalent. Thus calculating char-acteristic algebras often obviates the need to calculate �rst- and second-order Poincar�e-Chekanov polynomials.Remark 3.2.13. Abelianized characteristic algebras. Note that the �rst-order Poincar�e-Chekanov polynomials depends only on the abelianization of (A; @). If the proceduredescribed in Remark 3.2.12 yields two characteristic algebras whose abelianizations areisomorphic, then the original DGAs have the same �rst-order Poincar�e-Chekanov polyno-mials.On a related note, empirical evidence leads us to propose the following conjecture, whichwould yield a new topological knot invariant.Conjecture 3.2.14. For a Legendrian knot K with maximal Thurston-Bennequin num-ber, the equivalence class of the abelianized characteristic algebra of K, considered withoutgrading and over Z, depends only on the topological class of K.Here the abelianization is unsigned: vw = wv for all v; w.Remark 3.2.15. Scheme interpretation. We can view the abelianization of C in terms ofalgebraic geometry. If C = (Z=2)ha1 ; : : : ; ani = I, then the abelianization of C gives rise to ascheme X in A n , a�ne n-space over Z=2. Theorem 3.1.4 immediately implies the followingresult.Corollary 3.2.16. The scheme X is a Legendrian-isotopy invariant, up to changes of co-ordinates and additions of extra coordinates (i.e., we can replace X � A n by X�A � A n+1).There is a conjecture about �rst-order Poincar�e-Chekanov polynomials, suggested byChekanov, which has a nice interpretation in our scheme picture.Conjecture 3.2.17 ([Ch]). The �rst-order Poincar�e-Chekanov polynomial is independentof the augmentation ".Augmentations are simply the (Z=2)-rational points in X, graded in the sense that allcoordinates corresponding to aj of nonzero degree are zero. It is not hard to see that the�rst-order Poincar�e-Chekanov polynomial at a (Z=2)-rational point p in X is precisely the\graded" codimension in A n of TpX, the tangent space to X at p. The following conjecture,which we have veri�ed in many examples, would imply Conjecture 3.2.17.Conjecture 3.2.18. The scheme X is irreducible and smooth at each (Z=2)-rational point.
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Chapter 4
Applications
In this chapter, we give several illustrations of the constructions and results from Chap-ters 2 and 3, especially Theorems 2.5.16 and 3.1.4. The �rst four examples, all knots,both illustrate the computation of the characteristic algebra described in Section 3.1, anddemonstrate its usefulness in distinguishing between Legendrian knots. The last three, allmulti-component links, apply the techniques of Section 2.5 to conclude some results aboutLegendrian links.Instead of using the full DGA over Z[t; t�1 ] or Z[t1 ; t�11 ; : : : ; tk; t�1k ], we will work overZ=2 by setting t = 1 and reducing modulo 2. We hope soon to have applications of the fullalgebra.
4.1 Example 1: 62Our �rst example revisits the argument of [Ng1], which showed that there exist knots notLegendrian isotopic to their Legendrian mirrors. Let K be the unoriented Legendrian knotgiven in Figure 4-1, which is of knot type 62, with r = 0 and tb = �7. Here we will use thecharacteristic algebra to give a proof which is essentially identical to the one in [Ng1], butslightly cleaner.With vertices labelled as in Figure 4-1, the di�erential on the DGA (A; @) for K is givenby A = Zha1 ; : : : ; a9; b1; b2i and@a1 = 1 + a8a3b1 @a4 = a6a8@a2 = 1 + b1(1 + a5a8 + a9a4) @a5 = a9a6@b2 = a9 + (1 + a5a8 + a9a4)a3 @a7 = 1 + a8a9@a3 = @a6 = @a8 = @a9 = @b1 = 0:

a8

a9

a7 a6

a5

a4 a3

b2

a1

a2

b1

Figure 4-1: Front projection for the Legendrian knot K, of type 62, with vertices labelled.The use of ai and bi to label the vertices is not related to the ai and bi from Lemma 3.2.5;we use a and b to denote vertices of odd and even degree, respectively.
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The ideal I is generated by the above expressions. More precisely, I = hf1; f2; f3; f4; f5; f6i,where f1 = 1 + a8a3b1 f4 = a6a8f2 = 1 + b1(1 + a5a8 + a9a4) f5 = a9a6f3 = a9 + (1 + a5a8 + a9a4)a3 f6 = 1 + a8a9:The characteristic algebra of K is then given by C = A=I.The grading on A and C is given as follows: a1, a2, a4, a7, and a8 have degree 1; b1, b2have degree 0; and a3, a5, a6, a9 have degree �1.Note that the characteristic algebra for the Legendrian mirror of K is the same asC = A=I, but with each term in I reversed.Lemma 4.1.1. We haveC �= (Z=2)ha1 ; : : : ; a5; a7; a8; b1; b2i =h1 + a8a3b1; 1 + b1a8a3; 1 + a28a23; 1 + a8a3 + a5a8 + a8a23a4i:Proof. We perform a series of computations in C = A=I:a6 = a6 + (1 + a8a9)a6 = a8(a9a6) = 0;1 + a5a8 + a9a4 = a8a3b1(1 + a5a8 + a9a4) = a8a3;a9 = (1 + a5a8 + a9a4)a3 = a8a23:Substituting for a6 and a9 in the relations fi yields the relations in the statement of thelemma. Conversely, given the relations in the statement of the lemma, and setting a6 = 0and a9 = a8a23, we can recover the relations fi.Decompose C into graded pieces C = �iCi, where Ci is the piece of degree i.Lemma 4.1.2. There do not exist v 2 C�1; w 2 C1 such that vw = 1 2 C.Proof. Suppose otherwise, and consider the algebra C0 obtained from C by setting b1 =1; a1 = a2 = a4 = a5 = a7 = 0. There is an obvious projection from C to C0 which is analgebra map; under this projection, v; w map to v0 2 C0�1; w0 2 C01, with v0w0 = 1 in C0.But it is easy to see that C0 = (Z=2)ha3 ; a8i = h1 + a8a3i, with a3 2 C0�1 and a8 2 C01, and itfollows that there do not exist such v0; w0.Proposition 4.1.3. K is not Legendrian isotopic to its Legendrian mirror.Proof. Let ~C be the characteristic algebra of the Legendrian mirror of K. Since the relationsin ~C are precisely the relations in C reversed, Lemma 4.1.2 implies that there do not existv 2 ~C1; w 2 ~C�1 such that vw = 1. On the other hand, there certainly do exist v 2 C1; w 2C�1 such that vw = 1; for instance, take v = a8 and w = �a3b1. Hence C and ~C are notisomorphic. This argument still holds if some number of generators is added to C and ~C,and so C and ~C are not equivalent. The result follows from Theorem 3.1.4.Remark 4.1.4. More generally, the characteristic algebra technique seems to be an e�ectiveway to distinguish between some knots and their Legendrian mirrors; see Remark 4.2.5 foranother example. Note that Poincar�e-Chekanov polynomials of any order can never tell
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between a knot and its mirror, since, as noted above, the di�erential for a mirror is thedi�erential for the knot, with each monomial reversed.
4.2 Example 2: 74Our second example shows that the characteristic algebra is e�ective even when Poincar�e-Chekanov polynomials do not exist. In addition, Examples 2, 3, and 4 are the �rst examples,known to the author, in which the DGA grading is not needed to distinguish between knots.Consider the Legendrian knots K1, K2 shown in Figure 4-2; both are of smooth type74, with r = 0 and tb = 1. We will show that K1 and K2 are not Legendrian isotopic.We present this example before the 63 and 72 examples of Sections 4.3 and 4.4 because thealgebra is a bit simpler in this case.The di�erential on the DGA for K1 is given by@a1 = 1 + b4b7b1 @a5 = 1 + b7b6@a2 = 1 + b1b7b4 @a6 = 1 + b6b7@a3 = b7(1 + b4b3) @b2 = a3b4b7 + b7b4a4@a4 = (1 + b3b4)b7 @b5 = b7a6 � a5b7;the di�erential for K2 is given by@a1 = 1 + (1 + b4b5 + b4b7 + b6b7 + b4b5b6b7 + b4a5a6b7)b1@a2 = 1 + b1b7b4@a3 = b7(1 + b4b3)@a4 = b3 + b5 + b7 + b3b4b5 + b3b4b7 + b3b6b7 + b5b6b7 + b3b4b5b6b7 + a5a6b7 + b3b4a5a6a7@a6 = 1 + b7b6
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2KFigure 4-2: The fronts for the Legendrian knots K1 and K2, of type 74, with verticeslabelled.
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@b2 = b7b4a4 + a6b7 + a3(1 + b4b5 + b4b7 + b6b7 + b4b5b6b7 + b4a5a6b7)@b5 = a5b7:Denote the characteristic algebras of K1 and K2 by C1 = A=I1 and C2 = A=I2, respec-tively; here A = (Z=2)ha1 ; : : : ; a6; b1; : : : ; b7i, and I1 and I2 are generated by the respectiveexpressions above.Lemma 4.2.1. We haveC1 �= (Z=2)ha1 ; a2; a3; a5; b1; b2; b4; b5; b7i = h1 + b1b4b7; b1b4 + b4b1; b1b7 + b7b1; b4b7 + b7b4i:Proof. In C1, we compute thatb1b4b7 = b1b4b7b1b7b4 = b1b7b4 = 1b3 = b1b7b4b3 = b1b7b6b7b4b3 = b1b7b6b7 = b1b7b6 = b1b4b7b6 = b1b4a4 = b1b7b4a4 = b1a3b4b7a6 = b1b4b7a6 = b1b4a5b7;substituting for a4; a6; b3; b6 in the relations for C1 gives the result.Lemma 4.2.2. There is no expression in C1 which is invertible from one side but not fromthe other.Proof. It is clear that the only expressions in C1 which are invertible from either side areproducts of some number of b1, b4, and b7, with inverses of the same form. Since b1; b4; b7all commute, the lemma follows.Lemma 4.2.3. In C2, b7 is invertible from the right but not from the left.Proof. Since b7b6 = 1, b7 is certainly invertible from the right. Now consider adding to C2the relations b1 = 1, b3 = b7, b4 = b6, b2 = b5 = 0, and ai = 0 for all i. A straightforwardcomputation reveals that the resulting algebra is isomorphic to (Z=2)hb6 ; b7i = h1+ b7b6i, inwhich b7 is not invertible from the left. We conclude that b7 is not invertible from the leftin C2 either, as desired.Proposition 4.2.4. The Legendrian knots K1 and K2 are not Legendrian isotopic.Proof. From Lemmas 4.2.2 and 4.2.3, C1 and C2 are not equivalent.Remark 4.2.5. Although C1 and C2 are not equivalent, one may compute that their abelian-izations are isomorphic. It is also easy to check that K1 and K2 have no augmentations,and hence no Poincar�e-Chekanov polynomials.The computation from the proof of Lemma 4.2.3 also demonstrates that K2 is not Leg-endrian isotopic to its Legendrian mirror; we may use the same argument as in Section 4.1,along with the fact that b6 and b7 have degrees 2 and �2, respectively, in C2. By contrast,we see from inspection that K1 is the same as its Legendrian mirror.
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Figure 4-3: The oriented Legendrian knots K3 and K4, of type 63.
4.3 Example 3: 63This section provides another example of the e�cacy of the characteristic algebra whenPoincar�e-Chekanov polynomials do not exist. It is also the �rst example, known to theauthor, of two Legendrian knots with nonzero rotation number which have the same classicalinvariants but are not Legendrian isotopic. The knots are K3, K4 shown in Figure 4-3; bothare of smooth type 63, with r = 1 and tb = �4.We will omit some details in both this section and Section 4.4, since the arguments inboth sections are very similar to the argument from Section 4.2.Remark 4.3.1. We will not need these for the computation, but for both K1 and K2, b2 hasdegree 0, b1; b3 have degree �2, and ai has degree �1 for all i.Over Z=2, the di�erential on the DGA for K3 is given by@a1 = 1 + ((1 + b3b2)a7 + a6(1 + b2b3))a3@a2 = 1 + a3a5(1 + b3b2)@a4 = 1 + b2b3 + a5((1 + b3b2)a7 + a6(1 + b2b3))@a6 = b1 + b3 + b3b2b1@a7 = b1 + b3 + b1b2b3;the di�erential for K4 is given by@a1 = 1 + a6(1 + b3b2)a3@a2 = 1 + (1 + a3a4)(b1 + b3 + b1b2b3) + a3(a5 + a7 + a5a6a7)(1 + b2b3)@a4 = (1 + a5a6)(1 + b3b2)@a7 = b1 + b3 + b3b2b1:Denote the characteristic algebras of K3 and K4 by C3 and C4, respectively.
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Lemma 4.3.2. We haveC3 �= (Z=2)ha1 ; a2; a3; a4; a6; b2; b3i =h1 + a3(1 + b2b3)a3(1 + b3b2); 1 + (1 + b3b2)a3(1 + b2b3)a3i:
Proof. In C3, we compute that(1 + b1b2)(1 + b3b2) = 1 + (b1 + b3 + b1b2b3)b2 = 1(1 + b3b2)(1 + b1b2) = 1 + b2(b1 + b3 + b3b2b1) = 1b1 = a3a5(1 + b3b2)b1 = a3a5b3a5 = a5((1 + b3b2)a7 + a6(1 + b2b3))a3 = (1 + b2b3)a3a5(1 + b3b2) = ((1 + b3b2)a7 + a6(1 + b2b3))a3a5(1 + b3b2) = (1 + b3b2)a7 + a6(1 + b2b3)a7 = (1 + b1b2)(1 + b3b2)a7 = (1 + b1b2)(a5(1 + b3b2) + a6(1 + b2b3));substituting for a5; a7; b1 in the relations for C3 gives the result.Lemma 4.3.3. There is no expression in C3 which is invertible from one side but not fromthe other.Proof. It follows from the representation for C3 given by Lemma 4.3.2 that the expressionsa3, 1+b2b3, and 1+b3b2 are all invertible (from both sides). The only invertible expressionsin C3 which are invertible from either side are derived from these, and are hence invertiblefrom both sides.Lemma 4.3.4. In C4, a3 is invertible from the left but not from the right.Proof. Since a6(1+b3b2)a3 = 1, a3 is invertible from the left. Now consider adding to C4 therelations a5 = (b3+1)a3, a6 = (b3+1)a3, b1 = 1+a3(b3+1)a3, b2 = 1, a1 = a2 = a4 = a7 = 0.The resulting algebra is isomorphic to (Z=2)ha3 ; b3i = h1 + ((b3 + 1)a3)2i, in which a3 is notinvertible from the right.Proposition 4.3.5. The Legendrian knots K3 and K4 are not Legendrian isotopic.Remark 4.3.6. The abelianizations of C3 and C4 are isomorphic. Neither K3 nor K4 has aPoincar�e-Chekanov polynomial; it can also be shown that K3 and K4 are each isotopic totheir Legendrian mirrors (with, of course, the reverse orientations).
4.4 Example 4: 72Our next example applies the characteristic algebra to a case where the �rst-order Poincar�e-Chekanov polynomials exist but fail to distinguish between two knots. Let K5 and K6 bethe unoriented Legendrian knots shown in Figure 4-4; both are of smooth type 72, withr = 0 and tb = 1.
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6KFigure 4-4: The Legendrian knots K5 and K6, of type 72.
The di�erential on the DGA for K5 is given by@a1 = 1 + ((1 + b7b6)b5 + b7(1 + a6a5))(1 + b2b1)@a2 = 1 + ((b1 + b3 + b1b2b3)b4 + (1 + b1b2)(1 + a3a4))b7 + (1 + b1b2)a3b7a6@a4 = (1 + b7b6)(1 + b5b4) + b7(1 + a6a5)b4@a6 = 1 + b6b7@b3 = a3(1 + b7b6)b5 + a3b7(1 + a6a5)@b5 = b7a5;the di�erential for K6 is given by@a1 = 1 + b7(1 + b2b1)@a2 = 1 + ((b1 + b3 + b1b2b3)(1 + b4b5) + (1 + b1b2)(1 + a3a4)b5)(1 + b6b7)+ (((b1 + b3 + b1b2b3)b4 + (1 + b1b2)(1 + a3a4)) (1 + a5a6) + (1 + b1b2)a3a6) b7@a4 = b7b4@a6 = 1 + b7b6@b3 = a3b7@b5 = a5b7:Denote the characteristic algebras of K5 and K6 by C5 and C6, respectively.Lemma 4.4.1. We haveC5 �= (Z=2)ha1 ; a2; a4; a6; b1; b2; b3; b5; b7i = h1 + (1 + b2b1)b7; 1 + b7(1 + b2b1); b2b1 + b1b2i:
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Proof. In C5, we compute that a5 = (1 + b6b7)a5 = 0a3 = a3(b5 + b7 + b7b6b5)(1 + b2b1) = 0b4 = b4 + (1 + b6b7)b4 = b6((1 + b7b6)(1 + b5b4) + b7b4) = 0b6 = (1 + b1b2)b7b6 = 1 + b1b2;substituting for a3; a5; b4; b6 in the relations for C5 gives the result.Lemma 4.4.2. There is no expression in C5 which is invertible from one side but not fromthe other.Lemma 4.4.3. In C6, b7 is invertible from the right but not from the left.Proof. Since b7b6 = 1, b7 is invertible from the right. Now consider adding to C6 therelations b1 = 1, b2 = b6 + 1, b3 = b4 = b5 = 0, and ai = 0 for all i. The resulting algebra isisomorphic to to (Z=2)hb6 ; b7i = h1 + b7b6i, in which b7 is not invertible from the left.Proposition 4.4.4. The Legendrian knots K5 and K6 are not Legendrian isotopic.Remark 4.4.5. K5 and K6 have the same abelianized characteristic algebras, as usual, andthe same degree distributions; hence, by Proposition 3.2.4, they have the same �rst-orderPoincar�e-Chekanov polynomial, which we can calculate to be �+ 2.
4.5 Example 5: triple of the unknotIn this section, we rederive a result of [Mi] by using the link grading from Section 2.5. Ourproof is di�erent from the ones in [Mi].De�nition 4.5.1 ([Mi]). Given a Legendrian knot K, let the n-copy of K be the linkconsisting of K, along with n�1 copies of K slightly perturbed in the transversal direction.In the front projection, the n-copy is simply n copies of the front of K, di�ering from eachother by small shifts in the z direction. We will call the 2-copy and 3-copy the double andtriple, respectively.Let L = (L1; L2; L3) be the unoriented triple of the usual \
ying-saucer" unknot; thisis the unoriented version of the link shown in Figure 2-7.Proposition 4.5.2 ([Mi]). The unoriented links (L1; L2; L3) and (L2; L1; L3) are not Leg-endrian isotopic.Proof. In Example 2.5.18, we have already calculated the �rst-order Poincar�e-Chekanovpolynomials for (L1; L2; L3), once we allow the grading (�1; �2) to range in (12Z)2 , as stip-ulated by Remark 2.5.19. The polynomials for the link (L2; L1; L3) and grading (�1; �2) 2(12Z)2 are identical, except with the indices 1 and 2 reversed:P ";111 (�) = � P ";121 (�) = ��1+2�1�2�2 P ";131 (�) = �1�2�2P ";112 (�) = �1+2�2�2�1 P ";122 (�) = � P ";132 (�) = �1�2�1P ";113 (�) = ��1+2�2 P ";123 (�) = ��1+2�1 P ";133 (�) = �:
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It is easy to compute that there is no choice of �1; �2; �1; �2 for which these polynomialscoincide with the polynomials for (L1; L2; L3) given in Example 2.5.18. The result nowfollows from Theorem 2.5.16.
4.6 Example 6: double of the �gure eight knotIn [Mi], it is asked whether there is an unoriented Legendrian knot whose double is notLegendrian isotopic to the double with components exchanged. We will give an example ofsuch a knot in this section.Let L = (L1; L2) be the unoriented double of the �gure eight knot, shown in Figure 4-5.To calculate gradings, we temporarily give L an orientation and base points as marked. Wehave labelled the vertices of L so that ai 2 �11 for 1 � i � 7, ai 2 �22 for 8 � i � 14,ai 2 �12 for 15 � i � 21, and ai 2 �21 for 22 � i � 28.Proposition 4.6.1. The unoriented links (L1; L2) and (L2; L1) are not Legendrian iso-topic.Proof. As usual, we work modulo 2 and ignore powers of t1 and t2. An easy calculation onthe DGAs for L1 and L2 shows that any augmentation " of the DGA for L, as de�ned inSection 2.5, must satisfy "(a6) = "(a7) = "(a13) = "(a14) = 1 and "(a4) = "(a5) = "(a11) =
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Figure 4-5: The link L, with vertices labelled (the a's are suppressed). To calculate gradings,orientations and base points are given.
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"(a12) = 0. With that in mind, we �nd that
@(1)" a19 = a15 + a16@(1)" a21 = a16 + a17 @(1)" a22 = a28@(1)" a23 = a27@(1)" a24 = a27 + a28;and @(1)" ai = 0 for all other ai 2 �12 or ai 2 �21.Given the orientations and base points from Figure 4-5, we calculate the degrees in �12and �21 to be

deg ai =
8>>>>>>>>><>>>>>>>>>:

1 + 2�1 for a18,2�1 for a19; a21,�1 + 2�1 for a15; a16; a17; a20,1� 2�1 for a22; a23; a24; a25,�2�1 for a27; a28,�1� 2�1 for a26.It follows that P ";112 (�) = �1+2�1 +2��1+2�1 and P ";121 (�) = 2�1+2�1 +��1+2�1 . We disregardthe orientations of L1 and L2 by allowing any �1 2 12Z.For the link (L2; L1) and a choice of grading �1 2 12Z, we have the same Poincar�e-Chekanov polynomials, except with indices 1 and 2 switched; hence, for (L2; L1), P ";112 (�) =2�1+2�1 + ��1+2�1. It is clear that this is never equal to P ";112 (�) for (L1; L2) for any choiceof �1; �1. The result follows.
4.7 Example 7: Whitehead linkIn this section, we give an example where orientation is important. Consider the Legendrianform of the Whitehead link shown in Figure 4-6, with oriented components L1 and L2, andlet �Lj denote Lj with reversed orientation, as usual. By playing with the diagrams, onecan show that (L1; L2), (L2;�L1), (�L1;�L2), and (�L2; L1) are Legendrian isotopic, asare (�L1; L2), (�L2;�L1), (L1;�L2), and (�L2;�L1). It is also the case that these twofamilies are smoothly isotopic to each other. We will show, however, that they are notLegendrian isotopic.

L1

2L

2L

L1

=

Figure 4-6: The oriented Whitehead link. On the left, a form which is recognizably theWhitehead link; on the right, the Legendrian-isotopic form which we will use.
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Figure 4-7: The oriented link (L1; L2), with vertices labelled and base points as shown.
Proposition 4.7.1. The oriented links (L1; L2) and (�L1; L2) are not Legendrian isotopic.
Proof. Refer to Figure 4-7 for vertices and base points. Any map " with "(ai) = 0 fori � 3 is an augmentation. The only ai with ai 2 �12 are a4 and a7, both of which satisfy@ai = 0; their degrees are deg a4 = �1 + 2�1 and deg a7 = 2�1 for some �1 2 Z, and soP ";112 (�) = �2�1 + ��1+2�1.On the other hand, if we reverse the orientation of L1 (and choose a new base pointp1 on the lower half of L1), then we �nd deg a4 = 2�1 and deg a7 = 1 + 2�1 for some�1 2 Z, and so P ";112 (�) = �1+2�1 + �2�1 . It follows that, regardless of the choice of �1; �1,the polynomial P ";112 (�) will be di�erent for (L1; L2) and (�L1; L2).Examples 6 and 7 will be applied to knots on the solid torus in Chapter 5.
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Chapter 5
Legendrian satellites
In the smooth category, there is a satellite construction which glues a link in the solid torusS1�R 2 into a tubular neighborhood of a knot in R 3 to produce a link in R 3 . The motivationfor this chapter is that there is a Legendrian form of this construction which is invariantunder Legendrian isotopy. We can then deduce results about Legendrian solid-torus linksfrom results about Legendrian R 3 links, and vice versa. In addition, we hope in the future touse Legendrian satellites to give nontrivial, nonclassical invariants of stabilized Legendrianlinks in R 3 .We de�ne the construction in Section 5.1, and show how it immediately implies factsabout solid-torus links, including some that could not be shown using any previously knowntechniques. In Section 5.2, we show that the DGAs of some simple Legendrian satellitesof stabilized knots, unfortunately, do not contain any useful information; the key step isLemma 5.2.4, which is proven in Section 5.3. The computation performed in Section 5.3 maybe of interest as the �rst involved computation known to this author which works directlyon the DGA, rather than manipulating easier invariants such as the Poincar�e-Chekanovpolynomials or the characteristic algebra.
5.1 ConstructionThe solid torus S1 � R 2 inherits a contact structure from R 3 . View S1 � R 2 as R 3 modulothe relation (x; y; z) � (x+1; y; z); then the standard contact structure � = dz�y dx on R 3descends to the solid torus. As in R 3 , Legendrian links in the solid torus may be representedby their front projections to the xz plane, with the understanding that the x direction isnow periodic. If we view S1� R 2 as [0; 1]� R 2 with f0g� R 2 identi�ed with f1g� R 2 , thenwe can draw the front projection of a solid-torus Legendrian link as a front in [0; 1]�R withthe two boundary components identi�ed. We depict the boundary components by dashedlines; see Figure 5-1 for an illustration. For a Legendrian link ~L in the solid torus, let theendpoints of ~L be ~L \ (f0g � R 2), that is, the points where the front for ~L intersects thedashed lines.Remark 5.1.1. Invariants of solid-torus links. There are three classical invariants of linkson the solid torus: the Thurston-Bennequin number tb and rotation number r can becalculated from the front of a solid-torus link exactly as in R 3 ; and the winding number wis the number of times the link winds around the S1 direction of S1� R 2 . Clearly the tb, r,and w associated to any subset of the components of a solid-torus link also give invariantsof the link.
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In [NT], L. Traynor and the author show that the Chekanov-Eliashberg DGA can bede�ned for links on the solid torus, thus yielding a nonclassical invariant. For certain linkswith two components, [Tr] has also de�ned a nonclassical generating-function invariant. Wewill give examples in this section of solid-torus knots which are not Legendrian isotopic,but which cannot be distinguished using any of these invariants.We now introduce the Legendrian satellite construction. Let L be an oriented Legendrianlink in R 3 with one distinguished component L1, and let ~L be an oriented Legendrian linkin S1 � R 2 . We give two de�nitions of the Legendrian satellite S(L; ~L) � R 3 , one abstract,one concrete.A tubular neighborhood of L1 is a solid torus; the characteristic foliation on the bound-ary of this torus wraps around the torus tb(L1) times. By cutting the tubular neighborhoodat a cross-sectional disk, untwisting it tb(L1) times, and regluing, we obtain a solid toruscontactomorphic to S1 � R 2 with the standard contact structure. Thus we can embed~L � S1 � R 2 as a Legendrian link in a tubular neighborhood of L1. Replacing the compo-nent L1 in L by this new link gives S(L; ~L).We can rede�ne S(L; ~L) in terms of the fronts for L and ~L; see Figure 5-1 for a pictorialdescription. Suppose that ~L has n endpoints. By cutting along the dotted lines (i.e., the

L
~

L2

L1

L

(L,L~)SFigure 5-1: Gluing a solid-torus link ~L into an R 3 link L, to form the satellite link S(L; ~L).
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endpoints of ~L), we can embed ~L as a Legendrian tangle in R 3 with 2n ends. Replace thefront of the �rst component L1 of L by the n-copy of L1 (see De�nition 4.5.1). Now choosea small segment of L1 which is oriented from left to right; excise the corresponding n piecesof the n-copy of L1, and replace them by the front for ~L, cut along its endpoints.De�nition 5.1.2. The resulting link S(L; ~L) � R 3 is the Legendrian satellite of L � R 3and ~L � S1 � R 2 . We give S(L; ~L) the orientation derived from the orientations on ~L (forthe glued n-copy of L1) and on L (for the components of L besides L1).The Legendrian satellite construction is motivated by the special case of Whiteheaddoubles (see Section 5.2), which were introduced by Eliashberg and subsequently used byFuchs [Fu].Remark 5.1.3. Classical invariants of Legendrian satellites. Before we show that S(L; ~L) iswell-de�ned up to Legendrian isotopy, we note that the classical invariants of S(L; ~L) areeasily computable from those of L and ~L. Indeed, a straightforward computation with frontdiagrams yields tb(S(L; ~L)) = (w(~L))2 tb(L) + tb(~L)r(S(L; ~L)) = w(~L)r(L) + r(~L)when L is a knot, with a similar but slightly more complicated formula when L is a multi-component link.Lemma 5.1.4. S(L; ~L) is well-de�ned up to Legendrian isotopy.Proof. We need to show that, up to Legendrian isotopy, S(L; ~L) is independent of the pieceof the n-copy of L1 which we excise and replace by ~L, as long as this piece is oriented leftto right. The singularities of ~L consist of crossings, left cusps, and right cusps; we imaginepushing these singularities one by one from one section of the n-copy of L1 to another.We can clearly push these singularities through any piece of S(L; ~L) which crosses aneighborhood of ~L transversely; see the top diagram in Figure 5-2. Figure 5-3 shows thatwe can also push singularities through a right cusp in L1, and clearly this argument extendsto left cusps as well. We conclude that we can push all of ~L through a cusp, resulting inthe left-to-right mirror re
ection of ~L; see the bottom diagrams in Figure 5-2. The lemmafollows.
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Figure 5-2: Pushing ~L through singularities in L: a crossing, a right cusp, and a left cusp.
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Figure 5-3: Pushing singularities in ~L through a right cusp.
= =

=

Figure 5-4: Legendrian Reidemeister moves on n-copies; in this illustration, n = 3.
Theorem 5.1.5. S(L; ~L) is a well-de�ned operation on Legendrian isotopy classes; that is,if we change L; ~L by Legendrian isotopies, then S(L; ~L) changes by a Legendrian isotopy aswell.Proof. We �rst consider Legendrian-isotopy changes of ~L. These fall into two categories:isotopies where the endpoints of ~L remain �xed, and horizontal translations of ~L (i.e.,moving the dashed lines). The �rst category clearly preserves the Legendrian isotopy classof S(L; ~L). The second category consists of pushing singularities in ~L through the dashedlines. But Figure 5-3 shows that we can push individual singularities from one side of~L to the other, by moving the singularity all the way around the n-copy of L1. HenceLegendrian-isotopy changes of ~L do not change S(L; ~L).Next consider Legendrian-isotopy changes of L. It su�ces to show that S(L; ~L) doesnot change under Legendrian Reidemeister moves on L. Consider such a move, and push~L away from a neighborhood of the move. Then the fact that the Legendrian-isotopy classof S(L; ~L) does not change follows from Figure 5-4.Remark 5.1.6. Both the proof of Theorem 5.1.5 and Corollary 5.1.7 below have been knownfor some time. It is also possible, and probably more natural, to establish Theorem 5.1.5using the global, non-front de�nition of Legendrian satellites; we chose to present the frontproof because of its concreteness.Corollary 5.1.7. Legendrian-isotopic knots in R 3 have Legendrian-isotopic n-copies.Proof. The n-copy of a knot K is simply S(K; ~L(n)), where ~L(n) is the union of n unlinkedloops which wind once around S1�R 2 ; see Figure 5-5 for an illustration of ~L(2). The resultfollows from Theorem 5.1.5. 50
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Figure 5-5: The solid-torus links ~L(2) and S3 (with obvious generalization to a family oflinks Sn), and the solid-torus Whitehead knots W2k, k � 0, with W0 and W2 shown asexamples. The box indicates 2k half-twists.
Corollary 5.1.8 ([Mi]). Suppose that K is a stabilization of a Legendrian knot. The n-copy of K is Legendrian isotopic to the n-copy with components cyclically permuted. Moreprecisely, if L1; : : : ; Ln are the components of the n-copy of K, with Li slightly higher thanLi+1 in z coordinate, then (L1; L2; : : : ; Ln) is Legendrian isotopic to (L1+k; L2+k; : : : ; Ln+k)for any k, where indices are taken modulo n.Proof. Suppose, without loss of generality, that K = S+(K 0) for a Legendrian knot K 0.Then the n-copy of K is the Legendrian satellite S(K 0; Sn), where Sn is the solid-torus\n-copy stabilization link" depicted in Figure 5-5. It is easy to see that Sn is Legendrianisotopic to itself with components cyclically permuted; now apply Theorem 5.1.5.We now present some applications of Theorem 5.1.5 to knots and links on the solidtorus. Consider the link ~L(2) shown in Figure 5-5. The following result, established in [Tr]using generating functions, is also proven in [NT] using the DGA for solid-torus links. Theproof we give is yet another one.Proposition 5.1.9. Write ~L(2) = (~L1; ~L2). Then (~L1; ~L2) is not Legendrian isotopic to(~L2; ~L1).Proof. In Section 4.6, we showed that the double of the �gure eight knot is not Legendrianisotopic to the double with components swapped; see Proposition 4.6.1. The result nowfollows from Theorem 5.1.5.Now consider the Whitehead knots W2k shown in Figure 5-5. Each W2k has r = w = 0and is thus topologically isotopic to its inverse. By contrast, we can now show the followingresult.Proposition 5.1.10. W2k is not Legendrian isotopic to its inverse.Proof. As usual, write �W2k for the inverse of W2k, and let L be the double of the usual\
ying-saucer" unknot in R 3 . For k = 1, it is easy to check that S(L;W2) is precisely theoriented Whitehead link from Section 4.7, and that S(L;�W2) is the same link with one51



component reversed. Proposition 4.7.1 and Theorem 5.1.5 then imply that W2 and �W2are not Legendrian isotopic.A calculation similar to the one in the proof of Proposition 4.7.1, omitted here, showsthat S(L;W2k) and S(L;�W2k) are not Legendrian isotopic for arbitrary k � 0. The resultfollows.The solid-torus DGA from [NT] fails to distinguish betweenW2k and its inverse. Propo-sition 5.1.10 is thus a result about solid-torus knots whose only presently-known proof usesthe Legendrian satellite construction.
5.2 DoublesAs we observed in Remark 2.2.10, the Chekanov-Eliashberg DGA invariant vanishes forlinks which are stabilizations. The Legendrian satellite construction, however, seems toyield nontrivial nonclassical invariants of all Legendrian links; see Remark 5.2.7 below. Onthe other hand, the main result of this section shows that some of the simplest Legendriansatellites of stabilizations do not contain any new information.De�nition 5.2.1. The Legendrian Whitehead double of a Legendrian knot K in R 3 isS(K;W0), whereW0 is the knot shown in Figure 5-5. More generally, if ~L has two endpoints,then we call S(K; ~L) a satellite double of K.As mentioned in Section 5.1, the Legendrian Whitehead double was originally de�nedby Eliashberg, with further study by Fuchs [Fu], who uses the notation �dbl(0; 0) for ourS(K;W0).Remark 5.2.2. Legendrian satellites and maximal tb. By Remark 5.1.3, the LegendrianWhitehead double of any Legendrian knot has Thurston-Bennequin number 1. As notedby J. Sablo� and the author, it is easy to show that the Legendrian Whitehead doublemaximizes tb in its topological class. This follows from the fact that g(S(K;W0)) = 1,along with Bennequin's inequality tb(K) � 2g(K) � 1 [B], where g(K) is the (three-ball)genus of K. A similar argument shows that the usual double of any Legendrian knotmaximizes tb.It is not true, however, that all satellite doubles maximize tb, even when ~L maximizestb. In particular, if ~L has a half-twist next to its endpoints, and K is a stabilization,then S(K; ~L) will also be a stabilization.Proposition 5.2.3. If K1 and K2 are stabilized Legendrian knots in the same topologicalclass with the same tb and r, then the DGAs of the Legendrian Whitehead doubles of K1and K2 are equivalent.The key to proving Proposition 5.2.3 is the following result, whose proof we delay untilSection 5.3.Lemma 5.2.4. For any Legendrian knot K which is a stabilization, the DGAs of S(K;W0)and of S(S+S�(K);W0) are equivalent.Proof of Proposition 5.2.3. By a result of [FT], any two Legendrian knots which are topo-logically identical and have the same tb and r are Legendrian isotopic after some number ofapplications of the double stabilization operator S+S�. That is, there exists an n � 0 suchthat (S+S�)nK1 and (S+S�)nK2 are Legendrian isotopic. The proposition now followsdirectly from Lemma 5.2.4. 52



Remark 5.2.5. It can in fact be shown that the DGA of the Legendrian Whitehead doubleof a stabilized knot depends only on the tb and r of the knot, and not on its topological class.In particular, we can recover the result of [Fu] that the DGA of a Legendrian Whiteheaddouble always possesses an augmentation.A slightly modi�ed version of the proof of Lemma 5.2.4, omitted here for simplicity,establishes the following more general result.Proposition 5.2.6. If K1 and K2 are stabilized Legendrian knots in the same topologicalclass with the same tb and r, and ~L is any Legendrian link in S1 � R 2 with two endpointsand winding number zero, then the DGAs of S(K1; ~L) and S(K2; ~L) are equivalent.We believe that Proposition 5.2.6 actually holds for any satellite doubles of stabilizedknots K1 and K2 with the same tb and r, regardless of the winding number of ~L. However,the analogue of Lemma 5.2.4 is false if ~L has winding number �2, since S(K; ~L) andS(S+S�(K); ~L) have di�erent tb; see Remark 5.1.3. Nevertheless, the argument of theproof of Lemma 5.2.4 shows that the characteristic algebra, at least, can never distinguishbetween satellite doubles of stabilized knots.Remark 5.2.7. Invariants of stabilized Legendrian knots. As mentioned earlier, it remains avery interesting open problem to �nd nonclassical invariants of stabilized Legendrian knots.There are currently no methods to prove that two stabilized knots with the same topologicaltype, tb, and r are not Legendrian isotopic. Such methods would likely yield nonclassicalinvariants of some transversal knots as well; see Remark 1.2.2.We are hopeful that satellites more complicated than doubles will encode interestinginformation for stabilized knots. In particular, it seems that the n-copy of any Legendrianlink maximizes Thurston-Bennequin number when n � 2, and thus probably has a nontrivialDGA. By Corollary 5.1.7, the DGAs of Legendrian satellites of a Legendrian link, includingthe n-copy, are Legendrian-isotopy invariants, which likely contain interesting nonclassicalinformation in general. The problem we face when dealing with complicated satellites,however, is extracting useful information from the characteristic algebra.There is another approach to �nding invariants of stabilized knots, which is probablymore natural than investigating satellites. Eliashberg, Givental, and Hofer [EGH] haverecently developed symplectic �eld theory, which generalizes contact homology; Section 2.8of [EGH] describes how this method yields invariants of Legendrian links, which would likelynot vanish for stabilized knots. Unfortunately, no explicit combinatorial description, �a laChekanov, is presently known for the symplectic �eld theory associated to Legendrian links.
5.3 Proof of Lemma 5.2.4We may assume without loss of generality that K = S+(K 0) for some Legendrian K 0. Byusing, if necessary, Legendrian Reidemeister moves I (more precisely, the mirror of I) andIIb from Figure 1-1, we may further assume that the rightmost cusp in K 0 is orienteddownwards. If we shift the zigzag in K = S+(K 0) next to the rightmost cusp in K 0, thenK and S(K;W0) look like the diagrams in Figure 5-6 near the rightmost cusp.The corresponding parts of S+S�(K) and S(S+S�(K);W0) are also shown in Fig-ure 5-6, and S(K;W0) and S(S+S�(K);W0) are identical outside the regions depicted.It is easy to check that the degrees of all vertices not depicted are equal for the twoLegendrian Whitehead doubles, and that the degrees of the vertices depicted are 1 for53
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Figure 5-6: Whitehead doubles of stabilizations. In the lower diagrams, vertex ai is labelledby i.
a1; a2; a3; a4; a8; a9; a10; a11 and 0 for a5; a6; a7; a12; a13; a14; a15, in either diagram. Sincethe regions drawn are the rightmost parts of each double, the DGA for S(S+S�(K);W0) issimply obtained from the DGA for S(K;W0) by making the following replacements:

8<: @a2 = 1� ta5a6@a3 = t�1 � a6a7@a5 = @a6 = @a7 = 0
9=; �!

8>>>>>>>>>><>>>>>>>>>>:

@a2 = 1� ta5a6@a3 = t�1 � a6a12@a8 = 1� ta12a13@a9 = t�1 � a14a13@a10 = 1� ta15a14@a11 = t�1 � a15a7@a5 = @a6 = @a7 = 0@a12 = @a13 = @a14 = @a15 = 0

9>>>>>>>>>>=>>>>>>>>>>;
:

We further note that none of the vertices depicted in Figure 5-6, besides a1; a4; a5; a7,appears anywhere in the DGAs except in the equations above; a5; a7 appear additionally in@a1; @a4, respectively.Our goal is to apply elementary automorphisms and algebraic stabilizations to the DGAfor S(S+S�(K);W0), until we obtain the DGA for S(K;W0). Start with the DGA forS(S+S�(K);W0); we begin by rewriting @a3; @a8; @a9; @a10; @a11 in a more manageable
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form.We �rst wish to rewrite @a3 as @a3 = t�1� a6a7. (Intuitively, this follows from the factthat a5 = a7 in the characteristic algebra or in the homology of the DGA.) We de�ne thewords �1; �2; �3 in the DGA as follows, and then compute @�1; @�2; @�3:�1 = ta15a9 � a10a13�2 = ta11 � �1a7�3 = a8a7 � a12�2 =) @�1 = a15 � a13@�2 = 1� ta13a7@�3 = a7 � a12:Then if we apply the elementary automorphism a3 7! a3+a6�3, we obtain @a3 = t�1�a6a7.In a similar fashion, we can successively replace @a11; @a10; @a9; @a8 as follows: @a11 =t�1 � a15a5; @a10 = 1� ta6a14; @a9 = t�1 � a5a13; @a8 = 1� ta12a6.For convenience, we now de�ne~a2 = (1� ta6a5)a3 + a6a2a7 =) @~a2 = t�1 � a6a5:By applying the elementary automorphisms a11 7! a11 + ~a2 and a15 7! a15 + a6, we obtain@a11 = �a15a5. Similarly, we may write @a10 = �ta6a14, @a9 = �a5a13, @a8 = �ta12a6.At this point, the DGA has the following form:@a2 = 1� ta5a6 @a9 = �a5a13@a3 = t�1 � a6a7 @a10 = �ta6a14@a8 = �ta12a6 @a11 = �a15a5@a5 = @a6 = @a7 = @a12 = @a13 = @a14 = @a15 = 0:We next eliminate a8; a11; a12; a15 through algebraic stabilization and destabilization.Introduce e1 and e2 of degree 0 and �1, respectively, with @e1 = e2 (and @e2 = 0). Let �1be the composition of the following elementary automorphisms in succession:a12 7! a12 � e1a5; a8 7! a8 � e1a2; e1 7! e1 + ta12a6 � e2a2:Under �1, the DGA changes as follows:8>><>>:
@a8 = �ta12a6@e1 = e2@a12 = 0@e2 = 0

9>>=>>; �1�! 8>><>>:
@a8 = e1@e1 = 0@a12 = e2a5@e2 = 0

9>>=>>; :
We may then drop a8 and e1; these simply correspond to an algebraic stabilization.Let �2 be the composition of the following maps:a15 7! a15 � ta12a6; a11 7! a11 � ta12~a2; a12 7! a12 + a15a5 � te2a5~a2; a15 7! a15 + e2a2:Under �2, the DGA now changes as follows:8>><>>:

@a11 = a15a5@a12 = e2a5@a15 = 0@e2 = 0
9>>=>>; �2�! 8>><>>:

@a11 = a12@a12 = 0@a15 = e2@e2 = 0
9>>=>>; :

We can now drop a11; a12; a15; e2; these correspond to two algebraic stabilizations.
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Hence, up to algebraic stabilizations, we have eliminated a8; a11; a12; a15. An entirelysimilar process allows us to eliminate a9; a10; a13; a14. The resulting DGA is precisely theDGA of S(K;W0), as desired. 2Remark 5.3.1. The only part of this proof which uses the structure of W0 is the calculationof the degrees of the vertices in Figure 5-6. To prove the more general case given inProposition 5.2.6, we have to take more care vis-�a-vis degrees, but the idea is the same.The proof also extends to knots which are not satellite doubles, but whose rightmost partslook like the bottom diagrams in Figure 5-6.
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Chapter 6
Maximal Thurston-Bennequinnumber for two-bridge and pretzellinks
This chapter addresses a problem which is closely related to, but slightly di�erent from, thequestions of Legendrian isotopy which are the main concern of this dissertation. We studythe maximal Thurston-Bennequin number for two classes of links, the two-bridge links andthe three-stranded pretzel links. Using a bound provided by the Kau�man polynomial, weare able to calculate maximal tb for most of these links. We conclude with a section whichrelates the maximal tb problem to the rest of this dissertation.
6.1 Introduction and resultsIn this chapter, we will use the word \link" to denote either a knot or an oriented link; theThurston-Bennequin number, of course, is not well de�ned for unoriented multi-componentlinks. Since the results below are primarily interesting for knots, we will denote links by K.For a �xed topological link type K, the set of possible Thurston-Bennequin numbers ofLegendrian links in R 3 isotopic to K is bounded above; it is then natural to try to computethe maximum tb(K) of tb over all such links. Note that we distinguish between a link andits mirror; tb is often di�erent for the two. In some sense, tb is the Legendrian equivalentof the genus of a smooth knot, which is also bounded in one direction; the genus, however,seems to be more di�cult to compute in general.Bennequin [B] proved the �rst upper bound on tb(K), in terms of the (three-ball) genusof K. Since then, other upper bounds have been found in terms of the slice (or four-ball)genus [Ru2], the HOMFLY polynomial [FT], and the Kau�man polynomial. The strongestupper bound, in general, seems to be the Kau�man bound �rst discovered by Rudolph[Ru1], with alternative proofs given by several authors. See [Fer] for a more detailed historyof the subject.Recall the de�nition of the Kau�man polynomial FK(a; x) of an oriented link K; weuse the normalizations of [FT], which are the same as the original ones from [Kau2] exceptwith a replaced by a�1. First consider an unoriented link diagram T . The unorientedKau�man polynomial (or L-polynomial) LT (a; x) is de�ned recursively via the followingskein relations:
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+ = x + x= a= a�1 :Now, given an oriented link K, let T be an oriented link diagram representing K, and letw(T ) denote the writhe of T , or the signed number of crossings in T , with signs determinedby Figure 6-1. Then we de�ne the Kau�man polynomial by FK(a; x) = aw(T )LT (a; x).Although LT is only an invariant under regular isotopy (i.e., isotopy �xing the writhe), FKis an invariant under smooth isotopy.For a polynomial P (a; x), let v(P ) denote the minimum degree of a in P (a; x).Theorem 6.1.1 (Kau�man bound). If K is an (oriented) Legendrian link in standardcontact R 3 , then tb(K) � v(FK)� 1.The Kau�man bound is not sharp in general; see, e.g., [Fer] or [EH]. Sharpness hasbeen established, however, for some small classes of knots, including positive knots [Tan]and most torus knots [Eps, EH]. Etnyre and Honda have also exhibited in [EH] the �rstknown family of knots for which the Kau�man inequality fails to be sharp.In this chapter, we will investigate sharpness for two somewhat larger classes of links,2-bridge (rational) links and three-stranded pretzel links. We will demonstrate that theKau�man bound is sharp for all 2-bridge links and most pretzel links, and will exhibitclasses of pretzel links for which we believe the Kau�man bound fails to be sharp. (Part ofthe calculation for pretzel links has already been performed in [FT]; see Remark 6.1.5.)Remark 6.1.2. For two-bridge links and three-stranded pretzel links, the other bounds ontb (genus, slice genus, HOMFLY) fail to be sharp in general.Before stating our main results, we recall the de�nitions of 2-bridge and pretzel links.A 2-bridge link is any nontrivial link which admits a diagram with four vertical tangencies(two on the left, two on the right). A (three-stranded) pretzel link is a link of the formP (p1; p2; p3) depicted in Figure 6-2. It is easy to see that the smooth isotopy class of theP (p1; p2; p3) is unchanged under permutations of the pi.We need one more piece of notation. For an oriented link K, de�ne etb(K) = v(FK) �1� tb(K); then etb(K) � 0, with equality if and only if the Kau�man bound is sharp for K.Theorem 6.1.3. If K is an oriented 2-bridge link, then etb (K) = 0.

+ −Figure 6-1: Calculating the writhe of an oriented link diagram. The writhe is the signednumber of crossings of the link diagram, counted with the signs above.
58



p1

p

p3

2 p

Figure 6-2: The pretzel link P (p1; p2; p3) and the torus link T (p). Each box contains thespeci�ed number of half-twists, with the same conventions as in Figure 6-3.
Theorem 6.1.4. Suppose p1; p2; p3 > 0. Then etb = 0 for P (p1; p2; p3), P (�p1; p2; p3), andP (�p1;�p2;�p3), and for P (�p1;�p2; p3) when p1 � p2 6= p3+1. For the remaining case,we have

0 � etb(P (�p1;�p3 � 1; p3)) � 8><>:2 if p1 � p3 + 4,3 if p1 = p3 + 3,1 if p1 = p3 + 1 or p1 = p3 + 2.
Remark 6.1.5. Theorem 6.1.4 is only partially original. Kanda [Kan2] calculated tb forP (2n + 1; 2n + 1; 2n + 1), n � 1, using Giroux's theory of convex surfaces. Fuchs andTabachnikov [FT] subsequently calculated tb for P (p1; p2; p3) and P (�p1;�p2;�p3), usingthe Kau�man bound and the HOMFLY bound, respectively.We will prove Theorem 6.1.3 in Section 6.2 and Theorem 6.1.4 in Section 6.3. Section 6.4discusses consequences and possible rami�cations of these results, and formulates ties withprevious chapters.
6.2 Proof for 2-bridge linksIn this section, we prove Theorem 6.1.3. Let K be a 2-bridge link; we �rst need to �nd asuitable Legendrian embedding of K. Say that a link diagram is in rational form if it is inthe form T (a1; : : : ; an) illustrated by Figure 6-3 for some a1; : : : ; an. Clearly any rational-form diagram corresponds to a 2-bridge link; by the classi�cation of 2-bridge links ([Sch], orsee [Mur] for a very accessible exposition), any 2-bridge link has a rational-form diagram.To each T (a1; : : : ; an), we may associate a rational number, the continued fraction

[a1; : : : ; an] = a1 + 1�a2 + 1a3 + 1�a4 + � � � + 1(�1)n�1an :Note that our convention is the opposite of the convention in [Lic], and di�ers by alternatingsigns from the standard convention from, e.g., [Mur]. The classi�cation of 2-bridge linksfurther states that if 1=[a1; : : : ; an]�1=[b1; : : : ; bn] 2 Z, then T (a1; : : : ; an) and T (b1; : : : ; bn)are ambient isotopic. (The criterion stating precisely when two such links are isotopic isonly slightly more complicated, but will not concern us here.)Now de�ne T (a1; : : : ; an) to be in Legendrian rational form if ai � 2 for all i. AlthoughT (a1; : : : ; an) corresponds to a Legendrian link whenever ai � 1 for all i, it is crucial to theproof of Lemma 6.2.2 that ai � 2 for 2 � i � n� 1. Indeed, if one of these ai is 1, then it
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positive twists negative twistsFigure 6-3: The rational-form diagram T (a1; : : : ; an). Each box contains the speci�ednumber of half-twists; positive and negative twists are shown.

Figure 6-4: The correspondence between a diagram in Legendrian rational form (in thiscase, T (2; 2; 3), or 52) and the front of a Legendrian link of the same ambient type.
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is straightforward to see, by drawing the front, that the resulting Legendrian link does notmaximize Thurston-Bennequin number.Any link diagram in Legendrian rational form is easily converted into the front of aLegendrian link by replacing the four vertical tangencies by cusps; see Figure 6-4. Sincethe crossings in a front are resolved locally so that the strand with more negative slopealways lies over the strand with more positive slope, a link diagram in Legendrian rationalform is ambient isotopic to the corresponding front. (This observation explains our choiceof convention for positive versus negative twists.)Lemma 6.2.1. Any 2-bridge link can be expressed as a diagram in Legendrian rationalform.Proof. Let K be a 2-bridge link; let T (a1; : : : ; an) be a rational-form diagram for K, andwrite [a1; : : : ; an] = p=q for p; q 2 Z. The classi�cation of 2-bridge links implies that K isisotopic to any rational-form diagram associated to the fraction r = p=(q � b qpcp) > 1. (Ifq=p is an integer, then it is easy to see that K is the trivial knot, which is not 2-bridge.)De�ne a sequence x1; x2; : : : of rational numbers by x1 = r, xi+1 = 1=(dxie � xi). Thissequence terminates at, say, xm, where xm is an integer. Write bi = dxie. It is easy to seethat bi � 2 for all i, and that r = [b1; : : : ; bm]. Then K is isotopic to T (b1; : : : ; bm), whichis in Legendrian rational form.Consider a link diagram T = T (a1; : : : ; an) in Legendrian rational form, and let K bethe (Legendrian link given by the) front obtained from T . We claim that the Thurston-Bennequin number of K agrees precisely with the Kau�man bound. Recall that the Kau�-man polynomial FT (a; x) of T is aw(T ) times the unoriented Kau�man polynomial (or L-polynomial) LT (a; x), where w(T ) is the writhe of the diagram T . (Here we use Kau�man'soriginal notation [Kau1], except with a replaced by 1=a.)We will need a matrix formula for LT (a; x) due to [Lic]. Write
M = 0@x �1 x1 0 00 0 1=a

1A ; S = 0@ 0 1 00 0 11=a 0 0
1A ; v = 0@100

1A ; w = 0@ aa2a2+1x � a
1A ;

then LT (a1;:::;an)(a; x) = 1avtM�a1�1SM�a2�1S � � �M�an�1Sw;where t denotes transpose.Lemma 6.2.2. If a1; an � 1 and ai � 2 for 2 � i � n� 1, then v(LT (a1;:::;an)(a; x)) = �1.Proof. None of M�1, S, and w contains negative powers of a; thus the lemma will follow ifwe can show that f(x) 6= 0, wheref(x) = (vtM�a1�1SM�a2�1S � � �M�an�1Sw)ja=0:De�ne the auxiliary matrices
A =M�1ja=0 = 0@ 0 1 0�1 x 00 0 0

1A ; B = (M�2SM�1)ja=0 = 0@1 0 0x 0 00 0 0
1A ; u = 0@010

1A :
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Then (ASw)ja=0 = 1xAu and B = Auvt, and sof(x) = vtAa1�1BAa2�2BAa3�2B � � �Aan�1�2BAan�1(ASw)ja=0= 1x(vtAa1u)(vtAa2�1u)(vtAa3�1u) � � � (vtAan�1�1u)(vtAanu):But if we de�ne a sequence of functions fk(x) = vtAku, then an easy induction yields therecursion fk+2(x) = xfk+1(x) � fk(x) with f1(x) = 1 and f2(x) = x. In particular, for allk � 1, fk(x) has degree k � 1 and is thus nonzero. From the given conditions on ai, itfollows that f(x) 6= 0, as desired.Proof of Theorem 6.1.3. Let T be a Legendrian rational form for a 2-bridge link K. Thecrossings of T are counted, with the same signs, by both the writhe of T and the Thurston-Bennequin number of the Legendrian link K 0 obtained from T ; tb(K 0), however, also sub-tracts half the number of cusps. Hencetb(K 0) = w(T )� 2= v(FT (a; x))� v(LT (a; x))� 2= v(FT (a; x))� 1by Lemma 6.2.2. Since K 0 is ambient isotopic to K, we conclude that tb(K) is at leastv(FT )� 1; by the Kau�man bound, equality must hold.
6.3 Proof for pretzel linksTheorem 6.1.4 follows from the following result.Lemma 6.3.1. Suppose p1; p2; p3 > 0. Thenv(P (p1; p2; p3)) = �2;v(P (�p1; p2; p3)) = �p1;v(P (�p1;�p2;�p3)) = 2� p1 � p2 � p3;and, for p1 � p2,
v(P (�p1;�p2; p3)) =

8>>>>>><>>>>>>:
2� p1 � p2 + p3 if p2 � p3 + 2,�p1 if p2 � p3,2� p1 if p1 � 3 � p2 = p3 + 1,3� p1 if p1 � 2 = p2 = p3 + 1,1� p1 if p1 � 1 = p2 = p3 + 1 or p1 = p2 = p3 + 1:

Before we prove Lemma 6.3.1, we deduce Theorem 6.1.4 from it.Proof of Theorem 6.1.4. Fronts for Legendrian forms of the various pretzel knots are givenin Figures 6-5 and 6-6. For the given form of P (p1; p2; p3), we have tb = w(P (p1; p2; p3))�3,because the cusps contribute �3 and each crossing gives the same contribution to tb and to
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Figure 6-5: Fronts for P (p1; p2; p3), P (�p1; p2; p3), and P (�p1;�p2;�p3). Horizontal andvertical boxes represent the sample boxes depicted, with the label denoting the number ofcrossings. As an example, the front for P (�3; 5; 4) is given at bottom.
the writhe w of the link diagram for P (p1; p2; p3) shown in Figure 6-2. By Lemma 6.3.1,tb� v(FP (p1;p2;p3)) + 1 = tb� v(LP (p1;p2;p3))� w(P (p1; p2; p3)) + 1= �2� v(P (p1; p2; p3))= 0;and the Kau�man bound is sharp. Similar calculations show that the Kau�man bound issharp for the given Legendrian forms of P (�p1; p2; p3), for which tb = w(P (�p1; p2; p3))�p1 � 1, and P (�p1;�p2;�p3), for which tb = w(P (�p1;�p2;�p3))� p1 � p2 � p3 + 1.For the Legendrian forms of P (�p1;�p2; p3) given in Figure 6-6, with p1 � p2, a routinecalculation yields

tb = (w(P (�p1;�p2; p3))� p1 � p2 + p3 + 1 if p2 � p3 + 2,w(P (�p1;�p2; p3))� p1 � 1 if p2 � p3 + 1:Although Figure 6-6 only shows Legendrian forms for p2 � 2, a similar calculation holdswhen p2 = 1. We now use Lemma 6.3.1, as before, to conclude that the Kau�man bound issharp for p2 6= p3 + 1, and to deduce the bounds on etb in the statement of the propositionfor p2 = p3 + 1.
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p3 - p2 +1 p2 -2

p1 - p2 +1

p3

p2 - p3 -1 p1 - p3 -1

Figure 6-6: Fronts for P (�p1;�p2; p3), where p1 � p2 � 2. The top front is for p2 � p3+2;the second is for p2 � p3 + 1. Horizontal and vertical boxes are as in Figure 6-5; dashedboxes with a number inside indicate that number of concatenations of the small �gure inthe dashed box. As examples, the fronts for P (�7;�5; 2) and P (�4;�3; 5) are given atbottom.
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The rest of this section is devoted to the proof of Lemma 6.3.1. Let T (p) denote the toruslink shown in Figure 6-2; by abuse of notation, we will write T (p) also for the unorientedKau�man polynomial of the knot diagram portrayed in Figure 6-2. We may computeT (p) inductively from the following lemma, which follows directly from the Kau�man skeinrelations, applied to one of the crossings of T (p).Lemma 6.3.2. T (p) + T (p� 2) = xT (p� 1) + xap�1:Lemma 6.3.2 allows us to calculate the part of the polynomial T (p) with lowest degreein a, by induction from the well-known (or easily calculated) values for T (0) and T (1). Fora polynomial P (a; x), let �(P ) be the sum of the terms in P with lowest degree in a, sothat �(P ) is the product of av(P ) and a polynomial in x.Lemma 6.3.3. We have
�(T (p)) =

8>>>>>><>>>>>>:
(xp�1 + o(xp�1))a�1 if p � 1,x�1a�1 if p = 0,a if p = �1,(x� x�1)a�1 if p = �2,xap+1 if p � �3.

Here o(�), as usual, represents terms of lower order.The key to the proof of Lemma 6.3.1 is the following result, which follows from anapplication of the Kau�man skein relation to one of the p1 crossings of the link P (p1; p2; p3)when p1 > 0, or to one of the jp1 � 2j crossings of the link P (p1 � 2; p2; p3) when p1 � 0.Lemma 6.3.4. P (p1; p2; p3) + P (p1 � 2; p2; p3) = xP (p1 � 1; p2; p3) + xap1�1T (p2 + p3).Now suppose, as in the statement of Lemma 6.3.1, that p1; p2; p3 > 0. The calculationsof v(P (p1; p2; p3)), v(P (�p1; p2; p3)), v(P (�p1;�p2; p3)), and v(P (�p1;�p2;�p3)) are byinduction, with varying degrees of di�culty, using Lemma 6.3.4.For P (p1; p2; p3), Lemma 6.3.1 now follows from the following result.Lemma 6.3.5. For p1; p2; p3 � 0, we have�(P (p1; p2; p3)) = �xp1+p2+p3�2 + o(xp1+p2+p3�2)� a�2:
Proof. We prove this by induction on p1+p2+p3. The cases (p1; p2; p3) = (0; 0; 0); (0; 0; 1),(0; 1; 1), and (1; 1; 1) are all easily checked. Otherwise, assume without loss of general-ity that p1 � p2 � p3; then p1 � 2. By Lemma 6.3.3, v(T (p2 + p3)) = �1, and bythe induction assumption, �(P (p1 � 1; p2; p3)) = �xp1+p2+p3�3 + o(xp1+p2+p3�3)� a�2 and�(P (p1 � 2; p2; p3)) = �xp1+p2+p3�4 + o(xp1+p2+p3�4)� a�2. The result now follows fromLemma 6.3.4.The proofs of Lemma 6.3.1 for P (�p1; p2; p3) and P (�p1;�p2;�p3) are easy inductionsalong the lines of the proof of Lemma 6.3.5, and will be omitted.Now consider P (�p1;�p2; p3). The following lemma, which completes the proof ofLemma 6.3.1, can be established by induction on p1 + p2 + p3, as before. The precisecomputations, which are quite involved but straightforward given the statement of thelemma, are omitted here. 65



Lemma 6.3.6. We have
v(P (�p1;�p2; p3)) = 8><>:2� p1 � p2 + p3 if p2 � p3 + 2,�p1 if p2 � p3,2� p1 if p1 � 3 � p2 = p3 + 1,and, furthermore,P (�(p3 + 3);�(p3 + 1); p3) = (�x4 + 2x2)a�p3 + � � � p3 � 3P (�(p3 + 2);�(p3 + 1); p3) = �a�p3�1 + (�x3 + x)a�p3 + � � � p3 � 3P (�(p3 + 1);�(p3 + 1); p3) = �x2a�p3 + � � � p3 � 3P (�p3;�p3; p3) = 2a�p3 + � � � p3 � 3P (�(p3 + 1);�p3; p3) = a�p3�1 + 0 � a�p3 + � � � p3 � 1P (�p3;�(p3 � 1); p3) = xa�p3 + � � � p3 � 2P (�(p3 + 1);�(p3 � 1); p3) = xa�p3�1 + x2a�p3 + � � � p3 � 2P (�p3;�(p3 � 2); p3) = (x2 � 1)a�p3 + � � � p3 � 3;where ellipses denote terms of higher degree in a.

6.4 DiscussionIn this section, we discuss some intriguing connections between the maximal Thurston-Bennequin story and the Chekanov-Eliashberg story from previous chapters.We �rst note that the Chekanov-Eliashberg DGA and the characteristic algebra aree�ective tools for determining when a given Legendrian link maximizes Thurston-Bennequinnumber. Recall that the DGA (and hence the characteristic algebra) of any stabilized linkis trivial; see Remark 2.2.10. We believe that a converse statement may also hold.Conjecture 6.4.1. If a Legendrian link K has trivial characteristic algebra, then it isLegendrian isotopic to a stabilization.Even if this conjecture is not true, triviality of the characteristic algebra is often a goodindication, in practice, that tb is not maximal.Here is a related proposal.Conjecture 6.4.2. Any Legendrian link which is not Legendrian isotopic to a stabilizationmaximizes Thurston-Bennequin number.This conjecture would be di�cult to prove from the DGA standpoint. If true, however, itwould combine with the DGA picture to facilitate computations of maximal tb when theKau�man bound fails. Any Legendrian link whose characteristic algebra did not vanishwould then automatically maximize tb. (This is our basis for asserting probable maximalThurston-Bennequin numbers below for certain links.)There appear to be mysterious connections between nonsharpness of the Kau�man in-equality and the Chekanov-Eliashberg algebra. D. Fuchs [Fu] has proposed the followingstatement, which he calls an \irresponsible conjecture."Conjecture 6.4.3 ([Fu]). The Kau�man bound is sharp for a Legendrian knot K if andonly if the Chekanov-Eliashberg DGA for K admits an (ungraded) augmentation.66



(For the de�nition of augmentation, see Section 3.2.) The conjecture was originally statedfor graded augmentations, but is false in this case. We would like to propose a relatedconjecture, for which we have some (but not overwhelming) empirical evidence.Conjecture 6.4.4. The Kau�man bound is sharp for a Legendrian knot K if and only ifthe abelianized characteristic algebra of K is not trivial.Certainly, if the abelianized characteristic algebra of K is trivial, then the DGA for Kadmits no augmentation. Recall that we conjectured in Section 3.2 that the abelianizedcharacteristic algebra of K, when K maximizes tb, depends only on the smooth isotopyclass of K.For the remainder of this section, we survey what is known about sharpness of theKau�man bound for particular links. We begin with prime knots with small numbers ofcrossings, for which we can apply our 2-bridge result.The class of 2-bridge links includes many prime knots with a small number of crossings.More precisely, all prime knots with seven or fewer crossings are 2-bridge, as are all primeknots with eight or nine crossings except the following: 85, 810, 815{821, 916, 922, 924, 925,928, 929, 930, and 932{949. Examples drawn by hand by N. Yufa [Yu] and the author showthat the Kau�man bound is sharp for all of the above eight-crossing knots except for 819(more precisely, the mirror image of the version drawn in [Rol]). Since 819 is the (4;�3)torus knot, a result of [EH] yields tb = �12 in this case, while the Kau�man bound givestb � �11. These calculations and Theorem 6.1.3 yield the following result.Proposition 6.4.5. The Kau�man bound is sharp for all prime knots with eight or fewercrossings, except the (4;�3) torus knot 819, for which etb = 1.Further drawings show that the Kau�man bound is sharp for all of the nine-crossingprime knots which are not 2-bridge, except possibly for 942 (more precisely, the mirror ofthe one in [Rol]). For this last knot, we believe that etb = 2. In Appendix B, we include atable of tb for prime knots with nine or fewer crossings.We next consider other knots. The only known family of knots for which the Kau�manbound is not sharp are the (p;�q) torus knots with p > q > 0 and q odd [EH]; for theseknots, we have etb = p � q. Our results with pretzel links suggest more families for whichKau�man may not be sharp.Recall from Theorem 6.1.4 that etb(P (�p1;�p3 � 1; p3)) is not necessarily zero whenp1 � p3+1, while Kau�man is sharp for all other three-stranded pretzel links. Among theseexceptional pretzel links, the only cases for which etb is known are the two pretzel knots whichare also torus knots: P (�3;�3; 2) is the (4;�3) torus knot, while P (�5;�3; 2) is the (5;�3)torus knot. From [EH], we conclude that etb(P (�3;�3; 2)) = 1 and etb(P (�5;�3; 2)) = 2.Calculations with the characteristic algebra lead us to believe that etb(P (�p;�p; p�1)) =1 in general. This would give the second known class of links for which Kau�man is notsharp. For the other exceptional cases, we do not currently have guesses for what etb oughtto be; the characteristic algebra, however, suggests that the Legendrian links shown inFigure 6-6 do not maximize tb in these cases.
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Appendix A
Front projection proofs
In this appendix, we provide proofs for the major results about the Chekanov-EliashbergDGA over Z[t; t�1] described in Section 2.4, in the front-projection setup. Although theseresults have already been established in [ENS] for the Lagrangian projection, it is sometimesuseful to have proofs for the front projection available for reference.
A.1 Proof of Proposition 2.4.1Please refer to Section 2.2 for terminology and notation. This proof is quite similar to thecorresponding proof (of Lemma 4.7) in [ENS].Consider an admissible map f in the front projection of a Legendrian knot K, hav-ing initial vertex at ai and corner vertices at aj1 ; : : : ; aj` . Since this contributes a term�t�n(f)aj1 � � � aj` to @ai, we wish to prove that

deg ai = X̀k=1 deg ajk � 2n(f)r(K) + 1:
For any oriented path 
 in the diagram ofK, write c(
) for the number of cusps traversedupwards along 
, minus the number of cusps traversed downwards. Let ~
 be the closedcurve which is the union of the (counterclockwise oriented) boundary of the image of f andthe capping paths 
i, �
j1 ; : : : ;�
j` . Then the winding number of ~
 along K is n(f) byde�nition, and so c(~
) = �2n(f)r(K).On the other hand, we also have

c(~
) = c(f(@D2)) + c(
i)� X̀k=1 c(
jk):Since some of the paths begin and end at right cusps, we need a convention for when rightcusps are included in these paths. For convenience, we impose the following conventions:� capping paths for right cusps oriented upwards include the cusp (traversed upwards);� capping paths for right cusps oriented downwards exclude the cusp at both of theirendpoints;� f(@D2) does not include its initial vertex if this vertex is a right cusp;
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� f(@D2) includes a corner-vertex right cusp once, traversed upwards, if it enters andleaves the cusp from above; once, traversed downwards, if it enters and leaves frombelow; and once, traversed upwards, if it enters from above and leaves from below(i.e., the cusp is counted twice as a corner vertex).It is straightforward to check that these conventions form a consistent way to include andexclude right cusps. From the de�nitions, it is obvious that c(
i) = deg ai and c(
jk) =deg ajk , and a simple diagram chase shows that c(f(@D2)) = �1. The result follows. 2
A.2 Proof of Proposition 2.4.2Fix i; we wish to prove that @2ai = 0. The idea is to show that every monomial in @2aioccurs twice, with opposite signs and the same powers of t. A monomial in @2ai is givenpictorially by two admissible maps, one, f1, with initial vertex at ai, and the other, f2, withinitial vertex at some corner vertex aj of f1. (If aj is a right cusp, then we account for theextra 1 term in @aj by arti�cially allowing f2 to be possibly the constant map at the pointak, corresponding to the monomial 1.)The maps f1 and f2 share a common boundary beginning at aj and ending at someother vertex ak; moreover, it is easy to see that this common boundary is smooth andtravels only from right to left (starting at aj and ending at ak), and that ak is a node. Wecan glue the two maps along their common boundary to get another map f3 from D2 tothe plane, which no longer has a corner vertex at aj , and which would be admissible, withinitial vertex at ai, except for the singularity at ak; the image of f3 occupies three of thefour regions around ak (but not the region on the \left").Fix f3. The common boundary C between aj and ak can then be viewed as the smoothimage under f3 of a smooth curve in D2 starting at (the preimage of) ak and ending eitheron the boundary of D2 or at (the preimage of) a cusp, such that C always lies in the knotprojection Y . There are two possible ways to draw C, depending on which curve we chooseto leave ak through; each splits the image of f3 into two regions (one possibly empty), andeach of which contributes the same monomial, up to sign, to @2ai. (One of these two regionsis empty when aj is a right cusp and f2 is the constant map at aj .) We need to check thatthe two choices for C give two di�erent signs, and the same power of t, to the monomialsthey contribute to @2ai. See Figure A-1 for a concrete illustration.
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Figure A-1: Two contributions to @2a1 for the front from Figure 2-6 which glue togetherto form the same map, and which each contribute the monomial �a10a7 to @2a1. The leftdiagram corresponds to the terms a10a5 in @a1 and a7 in @a5; the right, a6 in @a1 and�a10a7 in @a6. 69



We �rst verify the powers of t. As described in Section 2.2, n(fi), for i = 1; 2, is thewinding numbers around K of the oriented closed curve consisting of the union of fi(@D2)and the capping paths of the vertices of fi. The power of t associated to the monomial in@2ai given by f1 and f2 is n(f1) + n(f2). It is easy to see, however, that the sum of theclosed curves associated to f1 and f2 depends only on f3, and so n(f1) + n(f2) is the samefor both of the decompositions of f3.The rest of this section is devoted to verifying the signs. We will need some morenotation. De�ne the sign of f3 analogously to our de�nition of the sign of an admissiblemap: sgn f3 is the product of (� sgn a`) over all downward corner vertices a`. Given twovertices v; w on the boundary of f3, let vw denote the section of the boundary of f3 betweenthem (counterclockwise from v to w), and then let sgn vw be the product of the signs of all(not necessarily downward) corner vertices in the interior of the section. For convenience,let � be the sign of the contribution of f1 and f2 to @2ai. Then we claim that� = �(sgn aiak)(sgn ak)(sgn f3);where the � sign is + if C follows the curve of higher slope from ak, and � if it follows thecurve of lower slope. The desired result will then follow.From the de�nition of @, � is (sgn f1)(sgn f2) times the product of the signs of thecorner vertices in f1 which occur before aj . On the other hand, there is nearly a one-to-onecorrespondence between downward corner vertices in f3 and the aggregate of downwardcorner vertices in f1 and f2, so that (sgn f1)(sgn f2) is nearly (sgn f3).We now have several cases, illustrated in Figure A-2, depending on whether the endpointaj of C is a vertex on the boundary of f3 before ak, a vertex on the boundary after ak, or aright cusp in the interior of f3. (This last case occurs when f2 is the trivial constant map atthe right cusp aj .) Write � = (sgn aiak)(sgn ak)(sgn f3); then we want to establish � = ��for the appropriate sign.In Case 1, every downward corner vertex in f1 or f2 appears as a downward corner vertexin f3, except for aj , which only appears in f1; hence (sgn f1)(sgn f2) = (� sgn aj)(sgn f3).From Proposition 2.4.1 applied to f2, we know that sgn aj = �(sgn ajak)(sgn ak). Hence� = (sgn aiaj)(sgn f1)(sgn f2) = (sgn aiaj)(� sgn ajak)(sgn f3) = �:We deal with the other cases similarly, by counting the downward corner vertices in f1 orf2 but not in f3:� = (sgn aiaj)(sgn f1)(sgn f2) = (sgn aiaj)(sgn aj)(sgn ak)(sgn f3) = �� (case 2)� = (sgn aiak)(sgn ak)(sgn f1)(sgn f2) = � (case 3)� = (sgn aiak)(sgn f1)(sgn f2) = �� (case 4)� = (sgn aiak)(sgn ak)(sgn f1) = � (case 5)� = (sgn aiak)(sgn f1) = �� (case 6). 2
A.3 Proof of Theorem 2.4.3To show that the di�erential algebra of a front is invariant (up to stable isomorphism) underLegendrian isotopy, it su�ces to show that it is invariant under each of the LegendrianReidemeister moves shown in Figure 1-1. The methods used in this proof closely followthose used in [Ch, section 10].
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Figure A-2: Gluing two admissible maps f1 and f2 together. The dashed curve representsthe boundary of the combination map f3. In Cases 5 and 6, f2 is the trivial constant mapat the right cusp aj .
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Figure A-3: The vertices a�ected by move I, with several relevant regions labelled.
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We �rst deal with move I, which is shown in Figure A-3. The three vertices a�ectedby the move are labelled by a; b; c in each diagram, and all other vertices a1; : : : ; an�3 areuna�ected by the move. We have also shaded in ten relevant regions. Denote the frontprojection on the left by K, and the one on the right by K 0; let @ and @0 be the di�erentialson the algebra A = Z[t; t�1]ha; b; c; a1; : : : ; an�3i corresponding to K and K 0, respectively.We claim that @0 = g@g�1, where g sends b to b + ca and leaves the other generators of A�xed.It is immediate by inspection of Figure A-3 that @a = @0a and @c = @0c. We can assumethat a, b, and c are arbitrarily close to each other, so that no term in any of @a; @0a; @c, or@0c involves b: any admissible map with a negative corner vertex at b must have a cornervertex to the right of a; b; c. Thus @0a = g@g�1(a) and @0c = g@g�1b.Now consider another vertex ai besides a; b; c. Any admissible map in K or K 0 withinitial vertex at ai has a unique analogous map in the other front, unless part of its boundarylooks like (2) or (ii). An admissible mapM inK which locally looks like (2) has a companionadmissible map ~M in K which has (1) glued onto (2) (so that corner vertices a and c arereplaced by b); this companion map corresponds to an admissible map M 0 in K 0 whichlocally looks like (iii), and the combined contribution of M and ~M to @ai is precisely thecontribution of M 0 to @0ai, except with b replaced by b� ca. (In fact, (� sgn b)b is replacedby (� sgn b)b + (� sgn a)(� sgn c)ca, but it is easy to show that sgn b = (sgn a)(sgn c); justadapt the proof of Proposition 2.4.1.)Similarly, an admissible map M 0 in K 0 which locally looks like (ii) has a companionadmissible map ~M 0 in K 0, which corresponds to an admissible map M in K, and thecombined contribution of M 0 and ~M 0 to @0ai is precisely the contribution of M to @ai,except with b replaced by b+ ca. All other admissible maps (ones whose monomials containneither b nor ca) in K or K 0 can be matched up one-to-one. Summing up the contributionsof all admissible maps with initial vertex at ai, we conclude that @0ai = g@ai = g@g�1ai.Note that we do not need to worry about powers of t here or elsewhere for move I. Thecapping paths for K and K 0 limit to each other as we approach the triple-point singularity,as do the boundaries of the images of corresponding admissible maps in K and K 0. Thusthe winding numbers giving the powers of t must be the same for corresponding terms inK and K 0.It remains to show that @0b = g@g�1b. Admissible maps in K with initial vertex at bfall into two categories: (A) those which look like (4) near b (i.e., have a corner vertex ata), and (B) those which look like the union of (4) and (5) near b (i.e., do not have a asa corner vertex). Similarly, admissible maps in K 0 with initial vertex at b are either (A0)those which look like (iv) near b, or (B0) those which look like the union of (iv) and (v) nearb. Write the contribution of (A) maps and (B) maps to @b as @1b and @2b, respectively, andsimilarly for (A0) and (B0).There is a one-to-one correspondence between (B) maps and (B0) maps, and so @2b = @02b.There is also a one-to-one correspondence between (A) maps and admissible maps withinitial vertex at c (simply glue region (1) to region (4), which gets rid of the corner vertexat a); hence @1b = (@c)a. Similarly, @01b = (� sgn c)c @0a = �(sgn c)c @a. We conclude that@0b = @01b+ @02b = �(sgn c)c @a+ @2(b) = @(b� ac) = g@g�1b:This completes the proof for move I. Moves II, III, and IV can be addressed at the sametime, with varying degrees of di�culty.Each of these moves begins with a front projection and adds two vertices to it: either
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Figure A-4: The new vertices a and b created by moves II, III, and IV.
two nodes (in the case of II and III), or a node and a right cusp (in the case of IV). We willprove invariance for the moves as drawn in Figure 1-1; the proofs for the mirror images ofthese moves in the z axis, while not identical, are entirely similar.Denote the original front projection by K, and the new one (with two more vertices) byK 0. Write the vertices of K (in order from highest to lowest x coordinate) as a1; : : : ; an;these are also the vertices of K 0, along with the two new vertices a and b (where a is to theright of b). If we arrange the vertices of K 0 in order from right to left, we may assume thata and b are adjacent, so that the vertices occur in the order a1; : : : ; ak; a; b; ak+1; : : : ; an forsome k. (For II, ak is thus the right cusp next to a and b.) See Figure A-4.For brevity, we will refer to Z[t; t�1 ]ha1; : : : ; ani as A, and to Z[t; t�1]ha1; : : : ; an; a; bias A0. Let the di�erentials on A;A0 arising from K;K 0 be @; @0, respectively. To showthat (A; @) and (A0; @0) are stably isomorphic, we �rst need to stabilize A: let S(A) bethe stabilization Z[t; t�1]ha1; : : : ; an; e1; e2i of A, where the degrees of e1 and e2 will bedetermined later, with the di�erential (also denoted @) inherited from A and also satisfying@e1 = e2; @e2 = 0. Let ~A be the submodule of S(A) over Z[t; t�1] generated by monomialscontaining either e1 or e2, so that S(A) has the submodule decomposition S(A) = A � ~A.Finally, if a is a right cusp inK or K 0, write �(a) = 1 if a is oriented upwards and �(a) = t�1if a is oriented downwards, so that @a or @0a contains �(a) as a term.We �rst de�ne an isomorphism � between S(A) and A0. Send ai to ai, and map e1 ande2 as follows:

� : e1; e2 7! 8<: a� �(ak)�1 akb; �b+ v + �(ak)�1akw for move IIa; b for move IIIa; b+ �(a) for move IV:For move II, de�ne w = @0b; we still need to de�ne v. There is a one-to-one correspondencebetween admissible maps onK 0 with initial vertex a and a corner vertex at b, and admissiblemaps with initial vertex ak, by deleting/appending the \curved triangle" with verticesa; b; ak. Hence the contribution to @0a of maps with a corner vertex at b is, up to powers oft, (@0ak � 1)b = (@ak � 1)b.To calculate the appropriate powers of t, let 
a, 
b, 
ak denote the capping paths asso-ciated to a, b, ak. Independent of the orientations of various sections of K, 
a � 
b is theclosed curve winding around the curved triangle once counterclockwise. A bit of thoughtthen shows that the desired contribution to @0a is (�(ak)�1@ak � 1)b.We now de�ne v be the contribution to @0a of maps without a corner vertex at b, i.e.,v = @0a� (�(ak)�1@ak � 1)b.Returning to the de�nition of �, we note that, for each move, �(e1) and �(e2) areof pure degree in Z, and deg �(e1) = deg �(e2) + 1. For example, for move II, the factthat 
a � 
b is the curved triangle counterclockwise shows that deg a = deg b + 1, and so
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Figure A-5: Locally deforming admissible maps in K to admissible maps in K 0 in move IV.The bottom diagram requires the addition of corner vertex b.
deg v = deg b = deg(�(ak)�1akw). Thus � gives a graded di�erential isomorphism betweenS(A) and A0.Under �, @0 pulls back to a di�erential on S(A), which we also write as @0. It thensu�ces to exhibit an automorphism on S(A) sending @ to @0. Note that we have de�ned� so that @0e1 = e2; @0e2 = 0: for move II, this follows from the de�nitions of v; w above,while for moves III and IV, this follows from the fact that @0a = b and @0a = �(a) + b,respectively.We now have the following key result (cf. Lemma 10.2 in [Ch, Lemma 10.2]).Lemma A.3.1. For all i, @ai � @0ai is in ~A � S(A).Proof. We prove the lemma separately for each move. We view � as giving relations betweene1; e2; a; and b, and will henceforth identify A0 with S(A) and suppress �.For move III, simply observe that every admissible map in K 0 not using a = e1 or b = e2as a corner vertex gives a corresponding admissible map in K, and vice versa.For move IV, any admissible map in K whose initial vertex is one of the ai can belocally deformed to an admissible map in K 0 by using the correspondence in Figure A-5wherever necessary. Conversely, it is straightforward to see that any admissible map in K 0not containing a as a corner vertex arises from an admissible map in K in this way. (Anyadmissible map in K 0 containing a as a corner vertex contributes a monomial to @0ai whichis in ~A.) The admissible maps in the upper diagram in Figure A-5 contribute the sameamount to @ai and @0ai. The contributions of the maps in the lower diagram di�er by theintroduction of (� sgn b)�(a)�1 b = ��(a)�1b = 1��(a)�1e2 into the monomials in K 0; thuseach term in @ai � @0ai contains e2.We now consider move II. Fix a vertex ai; the terms in @ai � @0ai arise from the ad-missible maps which locally look like one of the �gures in Figure A-6. (These are preciselythe maps in K or K 0 which have no analogue in the other front.) The maps in K 0 depictedin the top row can be paired up by appending/deleting the curved triangle; the contribu-tion to @ai � @0ai of each of these pairs is a multiple of a � �(ak)�1akb = e1, since themonomial for the right-hand map is identical to that for the left-hand map, except with(� sgn b)�(ak)�1akb = (sgn a)�(ak)�1akb instead of (� sgn a) a. Similarly, we can dispose ofthe maps in K 0 depicted in the second row of Figure A-6.The third row of Figure A-6 is more complicated. Any map in K corresponding tothe middle or right �gure (in the third row) breaks up into two maps in K 0 if we imaginedragging the right cusp ak past the crossing line; see Figure A-7. One is precisely a map
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Figure A-6: The maps in K and K 0 contributing to @ai � @0ai in move II. As usual, heavylines indicate the boundary of the map, and heavy shading indicates overlapping. Negativecorner vertices are marked, with multiplicity.
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Figure A-7: Splitting a map in K into two maps (shaded di�erently) in K 0, for move II.
like the left �gure (of the third row); the other corresponds to an entry in v (for the middle�gure) or w (for the right �gure). Conversely, we can assemble any two such maps in K 0to give such a map in K. Thus a map like the left �gure gives the same contribution to@ai�@0ai as the corresponding maps like the middle or right �gures, except with a replacedby ��(ak)�1akv � �(ak)�2a2kw. But a � �(ak)�1akv � �(ak)�2a2kw = e1 � �(ak)�1ake2, sothe contribution of the third row in toto is in ~A. An identical argument works for the fourthrow of Figure A-6; here we use the fact that b� v � �(ak)�1akw = �e2:De�ne a terraced di�erential with respect to the ordering a1; : : : ; ak; e1; e2; ak+1; : : : ; anto be a di�erential such that @ maps a variable to an expression only involving variables fol-lowing this variable in the list; by our observation that the rightmost point in an admissiblemap must be the initial vertex, we conclude that both @ and @0 are terraced. Theorem 2.4.3then follows from Lemma A.3.1 and the following lemma (cf. [Ch, p. 26]).Lemma A.3.2. If @ and @0 are terraced di�erentials with respect to a1; : : : ; ak, e1; e2,ak+1; : : : ; an, such that @e1 = @0e1 = b, @e2 = @0e2 = 0, @ai = @0ai for i � k + 1, and@ai � @0ai 2 ~A for all i, then @ and @0 are tamely isomorphic.Proof. For each i � k+1, de�ne A[i] � S(A) to be the algebra generated by ai; : : : ; ak; e1; e2;ak+1; : : : ; an, and note that @ = @0 on A[k+1]. We construct a series of automorphisms giof A0, for i = 1; : : : ; k, so that if we inductively de�ne @[k+1] = @; @[i] = gi@[i+1]g�1i , then@[i] = @0 on A[i]. The automorphism gi will send ai to ai+ qi (where qi 2 ~A\A[i+1] is to bedetermined), and will leave the other generators of A0 �xed.Suppose by induction that we have determined qi+1; : : : ; qk so that @[i+1] agrees with@0 on A[i+1]; we want to de�ne qi 2 ~A \ A[i+1] so that @[i] = gi@[i+1]g�1i agrees with @0 onA[i]. Note that @[i+1] maps A[i+1] to itself (because of the terraced di�erential condition),and so @[i] will certainly agree with @0 on A[i+1]; thus we simply need to �nd qi such that@[i]ai = @0ai.Now @[i+1]ai 2 A[i+1] by the terraced condition again, and @[i+1]qi = @0qi by the induction
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hypothesis (and the fact that qi 2 A[i+1]); thus@[i]ai = gi@[i+1]g�1i ai = gi@[i+1](ai � qi) = @[i+1]ai � @0qi:If we write ri = @[i+1]ai � @0ai, then it su�ces to de�ne qi so that @0qi = ri.Since qj+1; : : : ; qk 2 ~A by induction assumption, and @ai � @0ai 2 ~A by hypothesis, wesee that ri 2 ~A. In addition, since @[i+1]ai 2 A[i+1], and @ and @0 are di�erentials, we have@0ri = @0@[i+1]ai � @02ai = @2[i+1]ai � @02ai = 0.Now de�ne the linear map h : S(A) ! S(A) as follows: if w 2 A, then h(w) = 0; ify 2 A and z 2 S(A), then h(ye1z) = 0 and h(ye2z) = (sgn y)ye1z. We claim that h@0 + @0his the vector space projection from S(A) = A � ~A to ~A. Indeed, h@0 + @0h vanishes on A;also, if y 2 A, then (h@0 + @0h)(ye1z) = (sgn y)h(ye2z) = ye1z, and(h@0 + @0h)(ye2z) = h �(@0y)e2z + (sgn ye2)ye2(@0z)�+ (sgn y)@0(ye1z) = ye2z:If we de�ne qi = h(ri), then it now follows that@0qi = @0h(ri) = h@0ri + ri = ri:Also, ri 2 A[i+1], and so qi 2 ~A \ A[i+1]. This completes the induction.
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Appendix B
Maximal Thurston-Bennequinnumber for small knots
The table on the next page gives the maximal Thurston-Bennequin number for all primeknots with nine or fewer crossings. Note that this table improves on the corresponding onefrom [Tan], which only considers one knot out of each mirror pair, and does not achievesharpness in a number of cases. By Theorem 6.1.3, we can calculate tb(K) from the Kau�-man polynomial when K is 2-bridge; the computations when K is not 2-bridge follow from�gures drawn by N. Yufa [Yu] and the author.We distinguish between knots and their (topological) mirrors by using the diagrams in[Rol]: the knots K are the ones drawn in [Rol], with mirrors ~K. The boldfaced numbersindicate the knots for which the Kau�man bound is not sharp (for 819), or probably notsharp (for 942). As mentioned in Section 6.4, we believe that tb = �5 for the mirror 942knot; the best known bound, however, is the Kau�man bound tb � �3.
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K tb(K) tb( ~K) K tb(K) tb( ~K) K tb(K) tb( ~K) K tb(K) tb( ~K)01 �1 z 88 �4 �6 98 �8 �3 929y �8 �331 �6 1 89 �5 z 99 �16 5 930y �6 �541 �3 z 810y �2 �8 910 3 �14 931 �9 �251 �10 3 811 �9 �1 911 1 �12 932y �2 �952 �8 1 812 �5 z 912 �10 �1 933y �6 �561 �5 �3 813 �4 �6 913 3 �14 934y �6 �562 �7 �1 814 �9 �1 914 �4 �7 935y �12 163 �4 z 815y �13 3 915 �10 �1 936y 1 �1271 �14 5 816y �8 �2 916y 5 �16 937y �6 �572 �10 1 817y �5 z 917 �8 �3 938y �14 373 3 �12 818y �5 z 918 �14 3 939y �1 �1074 1 �10 819y 5 �12 919 �6 �5 940y �9 �275 �12 3 820y �6 �2 920 �12 1 941y �7 �476 �8 �1 821y �9 1 921 �1 �10 942y �3 �5(?)77 �4 �5 91 �18 7 922y �3 �8 943y 1 �1081 �7 �3 92 �12 1 923 �14 3 944y �6 �382 �11 1 93 5 �16 924y �6 �5 945y �10 183 �5 z 94 �14 3 925y �10 �1 946y �7 �184 �7 �3 95 1 �12 926 �2 �9 947y �2 �785y 1 �11 96 �16 5 927 �6 �5 948y �1 �886 �9 �1 97 �14 3 928y �9 �2 949y 3 �1287 �2 �8
Table B.1: Maximal Thurston-Bennequin numbers for prime knots with nine or fewer cross-ings. A dagger next to a knot indicates that it is not two-bridge; a double dagger indicatesthat the knot is amphicheiral (identical to its unoriented mirror).
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