Math 501 Homework #5, Fall 2023

Instructor: Ezra Miller

Solutions by: ...your name...

Collaborators: ...list those with whom you worked on this assignment...

Due: noon on Thursday 30 November 2023

EXERCISES

/60

- 1. Use the Euclidean algorithm to calculate $d = \gcd(69, 372)$ and express d as a linear /3 combination of 69 and 372.
- 2. Prove that, in a Euclidean domain, if a divides bc and $ab \neq 0$ then $\frac{a}{\gcd(a,b)}$ divides c. /3 Is the same necessarily true in an arbitrary PID?
- 3. Show that every localization of a PID is a PID. Exhibit a commutative domain R and $\sqrt{3}$ a submonoid S of R such that R is not a PID but $R[S^{-1}]$ is a PID and not a field.
- 4. Prove that the field \mathbb{Q} of rational numbers has no nontrivial automorphisms as a ring. /3
- 5. Show that $\langle x, y \rangle$ is not a principal ideal in R[x, y] for any commutative ring R.
- 6. Prove that $\mathbb{Z}[x_1, x_2, x_3, \ldots]/\langle x_1 x_2, x_3 x_4, \ldots \rangle$ has infinitely many minimal prime ideals. /3
- 7. Describe all of the ideals of $\mathbb{F}[x]/\langle g \rangle$, where \mathbb{F} is a field and $g \in \mathbb{F}[x]$ is any polynomial. /3
- 8. Let R be a commutative integral domain containing a field \mathbb{F} as a subring. Prove that /3 if R has finite dimension as a vector space over \mathbb{F} then R is a field.
- 9. Fix a module M over a commutative ring R with a multiplicative submonoid S of R. /3 Figure out how to define $M[S^{-1}]$, and show that it is a module over $R[S^{-1}]$.
- 10. If $0 \to M' \to M \to M'' \to 0$ is an exact sequence of modules over a commutative ring R /3 with a submonoid S, show that $0 \to M'[S^{-1}] \to M[S^{-1}] \to M''[S^{-1}] \to 0$ is exact.
- 11. Each prime ideal \mathfrak{p} in the commutative ring R yields a localization homomorphism /3 $M \to M_{\mathfrak{p}} = M[(R \setminus \mathfrak{p})^{-1}]$. Show that this homomorphism needn't be injective, but the natural map $M \to \prod_{\mathfrak{m}} M_{\mathfrak{m}}$ is injective, the product being over all maximal ideals \mathfrak{m} .
- 12. In the notation of the previous two exercises, prove that $0 \to M' \to M \to M'' \to 0$ is /3 exact if and only if $0 \to M'_{\mathfrak{p}} \to M_{\mathfrak{p}} \to M''_{\mathfrak{p}} \to 0$ is exact for all prime ideals \mathfrak{p} of R.
- 13. If R is an integral domain, M is a torsion-free R-module, and \mathfrak{p} is a prime ideal of R, /3 prove that the localization homomorphism $M \to M_{\mathfrak{p}}$ is injective.
- 14. Fix a left R-module M. Set $N = \{m \in M \mid xm = 0 \text{ for some } 0 \neq x \in R\}$. What /3 conditions on R guarantee that N is a submodule of M? Does commutativity help?
- 15. Prove that the annihilator $\operatorname{ann}(M) = \{x \in R \mid xm = 0 \text{ for all } m \in M\}$ of a left /3 R-module M is a two-sided ideal of R.

- 16. Is the ideal $\langle x, y \rangle$ in the polynomial ring $\mathbb{F}[x, y]$ a free module over $\mathbb{F}[x, y]$?
- 17. If M is a left R-module and $e \in R$ is a central idempotent of R, meaning that $e^2 = e/3$ and ex = xe for all $x \in R$, then prove that $M = eM \oplus (1 e)M$.
- 18. Fix an ideal $I \subseteq R$. Prove or disprove: R/I is a nonzero free R-module implies I = 0. /3
- 19. Prove that if every finitely generated module over a commutative ring R is free, then /3 R is either a field or the zero ring.
- 20. Formulate and prove a version of the Chinese Remainder Theorem for a module M/3 and ideals I_1, \ldots, I_n . What is the weakest "coprimality" condition you can think of to place on the ideals, given M?