Math 501 Homework \#5, Fall 2023

Instructor: Ezra Miller
Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment...
Due: noon on Thursday 30 November 2023

Exercises

1. Use the Euclidean algorithm to calculate $d=\operatorname{gcd}(69,372)$ and express d as a linear $/ 3$ combination of 69 and 372.
2. Prove that, in a Euclidean domain, if a divides $b c$ and $a b \neq 0$ then $\frac{a}{\operatorname{gcd}(a, b)}$ divides c. $/ 3$ Is the same necessarily true in an arbitrary PID?
3. Show that every localization of a PID is a PID. Exhibit a commutative domain R and $/ 3$ a submonoid S of R such that R is not a PID but $R\left[S^{-1}\right]$ is a PID and not a field.
4. Prove that the field \mathbb{Q} of rational numbers has no nontrivial automorphisms as a ring. /3
5. Show that $\langle x, y\rangle$ is not a principal ideal in $R[x, y]$ for any commutative ring R. $/ 3$

6 . Prove that $\mathbb{Z}\left[x_{1}, x_{2}, x_{3}, \ldots\right] /\left\langle x_{1} x_{2}, x_{3} x_{4}, \ldots\right\rangle$ has infinitely many minimal prime ideals. $/ 3$
7. Describe all of the ideals of $\mathbb{F}[x] /\langle g\rangle$, where \mathbb{F} is a field and $g \in \mathbb{F}[x]$ is any polynomial. /3
8. Let R be a commutative integral domain containing a field \mathbb{F} as a subring. Prove that $/ 3$ if R has finite dimension as a vector space over \mathbb{F} then R is a field.
9. Fix a module M over a commutative ring R with a multiplicative submonoid S of R. /3 Figure out how to define $M\left[S^{-1}\right]$, and show that it is a module over $R\left[S^{-1}\right]$.
10. If $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is an exact sequence of modules over a commutative ring $R / 3$ with a submonoid S, show that $0 \rightarrow M^{\prime}\left[S^{-1}\right] \rightarrow M\left[S^{-1}\right] \rightarrow M^{\prime \prime}\left[S^{-1}\right] \rightarrow 0$ is exact.
11. Each prime ideal \mathfrak{p} in the commutative ring R yields a localization homomorphism $/ 3$ $M \rightarrow M_{\mathfrak{p}}=M\left[(R \backslash \mathfrak{p})^{-1}\right]$. Show that this homomorphism needn't be injective, but the natural map $M \rightarrow \prod_{\mathfrak{m}} M_{\mathfrak{m}}$ is injective, the product being over all maximal ideals \mathfrak{m}.
12. In the notation of the previous two exercises, prove that $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is $/ 3$ exact if and only if $0 \rightarrow M_{\mathfrak{p}}^{\prime} \rightarrow M_{\mathfrak{p}} \rightarrow M_{\mathfrak{p}}^{\prime \prime} \rightarrow 0$ is exact for all prime ideals \mathfrak{p} of R.
13. If R is an integral domain, M is a torsion-free R-module, and \mathfrak{p} is a prime ideal of $R, / 3$ prove that the localization homomorphism $M \rightarrow M_{\mathfrak{p}}$ is injective.
14. Fix a left R-module M. Set $N=\{m \in M \mid x m=0$ for some $0 \neq x \in R\}$. What $/ 3$ conditions on R guarantee that N is a submodule of M ? Does commutativity help?
15. Prove that the annihilator $\operatorname{ann}(M)=\{x \in R \mid x m=0$ for all $m \in M\}$ of a left $/ 3$ R-module M is a two-sided ideal of R.
16. Is the ideal $\langle x, y\rangle$ in the polynomial ring $\mathbb{F}[x, y]$ a free module over $\mathbb{F}[x, y]$?
17. If M is a left R-module and $e \in R$ is a central idempotent of R, meaning that $e^{2}=e / 3$ and $e x=x e$ for all $x \in R$, then prove that $M=e M \oplus(1-e) M$.
18. Fix an ideal $I \subseteq R$. Prove or disprove: R / I is a nonzero free R-module implies $I=0$. $/ 3$
19. Prove that if every finitely generated module over a commutative ring R is free, then $/ 3$ R is either a field or the zero ring.
20. Formulate and prove a version of the Chinese Remainder Theorem for a module $M / 3$ and ideals I_{1}, \ldots, I_{n}. What is the weakest "coprimality" condition you can think of to place on the ideals, given M ?

