Math 501 Homework \#4, Fall 2023

Instructor: Ezra Miller
Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment...
Due: 11:59pm on Saturday 4 November 2023

Exercises

1. Determine the class equations of the groups of order 12.
2. Prove that if p is prime then every group of order $2 p$ is either cyclic or dihedral. /3
3. Given a group of order 30 , show that it has a normal subgroup of order 3 or 5 . /3
4. For permutations σ and π, must $\sigma \pi$ and $\pi \sigma$ have cycle decompositions of the same type? /3
5. What is the largest order of an element of S_{7} ?
6. Prove that the symmetric group S_{n} is generated by $(12 \cdots n)$ and (12).
7. In the free group F on x and y, show directly that the elements $u=x^{2}, v=y^{2}$, and $/ 3$ $w=x y$ generate a free subgroup on u, v, and w.
8. In any group, show that $\langle a, b\rangle=\left\langle b a b^{2}, b a b^{3}\right\rangle$.
9. Does $y^{-7} x^{4} y^{16} x^{5}$ lie in the smallest normal subgroup (of any group) containing $x y$? $/ 3$
10. Let $X \subseteq G$ be a subset and R a (perhaps incomplete) set of relations on X in G. Show $/ 3$ that the map $F_{X} \rightarrow G$ from the free group F_{X} induced by $X \subseteq G$ factors through F_{X} / N, where N is the normal subgroup of F_{X} generated by R.
11. Prove that the normal subgroup of the free group $F_{\{x, y\}}$ generated by the single $/ 3$ commutator $x y x^{-1} y^{-1}$ is the entire commutator subgroup.
12. Does every finite group admit a presentation with a finite set of defining relations? /3
13. Let R be the ring of all continuous real-valued functions on the closed interval $[0,1]$. / 3 Prove that the map $\varphi: R \rightarrow \mathbb{R}$ defined by $\varphi(f)=\int_{0}^{1} f(t) d t$ is a homomorphism of additive groups but not a ring homomorphism.
14. Prove that the ring $M_{2}(\mathbb{R})$ of 2×2 matrices with real entries contains a subring $/ 3$ isomorphic to the field \mathbb{C} of complex numbers.
15. An element x in a commutative ring R is nilpotent if $x^{n}=0$ for some $n \in \mathbb{N}$.
(a) Prove that the set of nilpotent elements of R forms an ideal. (It is called the $/ 3$ nilradical of R.)
(b) What happens without the commutative hypothesis on R ?
(c) Bonus: Prove that the nilradical of a commutative ring equals the intersection of $/ 3$ all of its prime ideals.
16. Let R be a commutative ring and $f \in R[x]$ a univariate polynomial over R.
(a) Prove that f is nilpotent if and only if all of its coefficients are nilpotent in R. $/ 3$
(b) Prove that f is a unit if and only if all of its coefficients are nilpotent in R except $/ 3$ for its constant term, which is a unit of R.
17. Let $\varphi: R \rightarrow S$ be a homomorhpism of commutative rings. If $P \subset S$ is a prime ideal, $/ 3$ then show that its preimage $\varphi^{-1}(P)$ is a prime ideal of R.
