Math 501 Homework #3, Fall 2023 $_{\rm Instructor:~Ezra~Miller}$

Solutions by: ...your name...

Collaborators: ...list those with whom you worked on this assignment...

Due: noon on Thursday 12 October 2023

]	Exei	RCISES	/6
	1.	The dihedral group of symmetries of a square acts on the set consisting of the diagonals of the square. What is the stabilizer of one of the diagonals?	/3
	2.	What is the stabilizer of the first standard basis vector under the left action of $GL_n(\mathbb{F})$ on the column vectors of size n , where \mathbb{F} is a field?	/3
	3.	Let $S = \mathbb{F}^{m \times n}$ be the $m \times n$ matrices over a field \mathbb{F} . Describe the orbit decomposition of S under the action of $G = GL_m(\mathbb{F}) \times GL_n(\mathbb{F})$ by $(A, B) \cdot M = AMB^{-1}$.	/3
	4.	Describe all ways in which S_3 can operate on a set of four elements.	/2
	5.	For groups $K \leq H \leq G$, prove $[G:K] = [G:H][H:K]$ without assuming G is finite.	/3
	6.	Show by example that if H and K are finite index subgroups of G , then $[H:H\cap K]$ need not divide $[G:K]$.	/3
		The dihedral group of symmetries of a square acts on the set of vertices; is that action faithful? What about the action on the diagonals?	/3
	8.	A group G acts on a set of five elements with two orbits, one of size 2 and one of size 3. What are the possibilities for G ?	/3
	9.	The octahedral group ${\cal O}$ acting by rotation on the cube. What is the stabilizer of a body diagonal?	/3
	10.	Prove that the icosahedral group has a subgroup of order 10.	/9
	11.	Determine the class equation of the dihedral group D_n .	/3
	12.	Classify the groups of order 8.	/3
	13.	Prove that every group of order 35 is cyclic.	/3
	14.	Prove that the tetrahedral group is isomorphic to the alternating group A_4 .	/3
	15.	If p is the smallest prime dividing $ G $ and $H \subseteq G$ has order p, then $H \subseteq Z(G)$.	/3
	16.	Prove that no group of order p^2q is simple if p and q are prime.	/3
	17.	Find a Sylow p-subgroup of $GL_2(\mathbb{F}_p)$.	/3
	18.	If $p^e G $ with p prime, show that G has a subgroup of order p^r for all $r \leq e$.	/3 /3
	19.	Prove that the only simple groups of order < 60 have prime order.	/3
	20.	Show that there are at most five isomorphism types of groups of order 20.	/3