Math 501 Homework #3, Fall 2023 $_{\rm Instructor:~Ezra~Miller}$ Solutions by: ...your name... Collaborators: ...list those with whom you worked on this assignment... Due: noon on Thursday 12 October 2023 |] | Exei | RCISES | /6 | |---|------|--|-------| | | 1. | The dihedral group of symmetries of a square acts on the set consisting of the diagonals of the square. What is the stabilizer of one of the diagonals? | /3 | | | 2. | What is the stabilizer of the first standard basis vector under the left action of $GL_n(\mathbb{F})$ on the column vectors of size n , where \mathbb{F} is a field? | /3 | | | 3. | Let $S = \mathbb{F}^{m \times n}$ be the $m \times n$ matrices over a field \mathbb{F} . Describe the orbit decomposition of S under the action of $G = GL_m(\mathbb{F}) \times GL_n(\mathbb{F})$ by $(A, B) \cdot M = AMB^{-1}$. | /3 | | | 4. | Describe all ways in which S_3 can operate on a set of four elements. | /2 | | | 5. | For groups $K \leq H \leq G$, prove $[G:K] = [G:H][H:K]$ without assuming G is finite. | /3 | | | 6. | Show by example that if H and K are finite index subgroups of G , then $[H:H\cap K]$ need not divide $[G:K]$. | /3 | | | | The dihedral group of symmetries of a square acts on the set of vertices; is that action faithful? What about the action on the diagonals? | /3 | | | 8. | A group G acts on a set of five elements with two orbits, one of size 2 and one of size 3. What are the possibilities for G ? | /3 | | | 9. | The octahedral group ${\cal O}$ acting by rotation on the cube. What is the stabilizer of a body diagonal? | /3 | | | 10. | Prove that the icosahedral group has a subgroup of order 10. | /9 | | | 11. | Determine the class equation of the dihedral group D_n . | /3 | | | 12. | Classify the groups of order 8. | /3 | | | 13. | Prove that every group of order 35 is cyclic. | /3 | | | 14. | Prove that the tetrahedral group is isomorphic to the alternating group A_4 . | /3 | | | 15. | If p is the smallest prime dividing $ G $ and $H \subseteq G$ has order p, then $H \subseteq Z(G)$. | /3 | | | 16. | Prove that no group of order p^2q is simple if p and q are prime. | /3 | | | 17. | Find a Sylow p-subgroup of $GL_2(\mathbb{F}_p)$. | /3 | | | 18. | If $p^e G $ with p prime, show that G has a subgroup of order p^r for all $r \leq e$. | /3 /3 | | | 19. | Prove that the only simple groups of order < 60 have prime order. | /3 | | | 20. | Show that there are at most five isomorphism types of groups of order 20. | /3 | | | | | |