Math 501 Homework #2, Fall 2023 $_{\rm Instructor:~Ezra~Miller}$

Solutions by: ...your name...

Collaborators: ...list those with whom you worked on this assignment...

Due: noon on Thursday 21 September 2023

Exe	RCISES	/(
1.	Determine the automorphism groups of the integers \mathbb{Z} , the symmetric group S_3 , and the cyclic group C_{10} .	/3
2.	Find all subgroups of S_3 and determine which are normal.	/3
3.	Given two homomorphisms φ and ψ from a group G to G', let $H \subseteq G$ be the subset	/3
4.	Prove that the center of any group is a normal subgroup.	/3
5.	If $\varphi: G \to G'$ is a surjective homomorphism and $N \triangleleft G$ is a normal subgroup, prove	/3
6.	Is the intersection $R \cap R'$ of two equivalence relations in $S \times S$ an equivalence relation on S ? Is the union?	/3
7.	Prove that every group whose order is a power of a prime p contains an element of order p .	/3
8.	Let \mathbb{F} be a field and W the solution set in \mathbb{F}^n of a system of homogeneous linear equations $A\mathbf{x} = 0$. Show that the solution set of any inhomogeneous system $A\mathbf{x} = \mathbf{b}$ is a coset of W .	/3
9.	Prove that every index 2 subgroup is normal. Exhibit a non-normal index 3 subgroup.	/3
10.	Classify all groups of order 6. Hint: is there an element of order 6? Of order 3 but not	/3
11.	If G and G' are finite groups whose orders are relatively prime, prove that there is a unique homomorphism $G \to G'$.	/3
12.	Fix subgroups H and K of a group G . Prove that the intersection $xH \cap yK$ of cosets is either empty or else is a coset of $H \cap K$. Conclude that if H and K have finite index in G then so does $H \cap K$.	/3
13.	Prove that a group of order 30 can have at most seven subgroups of order 5.	/2
14.	Fix a surjective group homomorphism $\varphi: G \to G'$ with kernel K . Show that the set of subgroups of G containing K and the set of all subgroups of G' are in bijection via the map $H \mapsto \varphi(H)$. If $H \subseteq G$, must it be that $\varphi(H) \subseteq G'$?	/3
15.	Is the symmetric group S_3 a direct product of nontrivial groups?	/3

- 16. Prove that the product of two infinite cyclic groups is not cyclic. Is the same true without the word "infinite"?
- 17. Fix a group G whose order is |G| = ab. Suppose that G has subgroups H and K with orders |H| = a and |K| = b. Assume that $|H \cap K| = 1$. Prove that HK = G. Is $G^{/3}$ isomorphic to the product group $H \times K$?
- 18. Suppose that a group G has a partition P with the property that for any pair of blocks A and B of the partition, the product AB is contained entirely within a block of P. At let N be the block that contains the identity e of G. Prove that $N \subseteq G$ and that P is the partition of G into the set of cosets of N.
- 19. Let $H = \{\pm 1, \pm i\} \subset \mathbb{C}^{\times}$, the subgroup of fourth roots of unity. Describe the cosets of H in \mathbb{C}^{\times} explicitly (geometrically), and prove that $\mathbb{C}^{\times}/H \cong \mathbb{C}^{\times}$.
- 20. Fix a group G. Let $N = \langle xyx^{-1}y^{-1} \mid x,y \in G \rangle$ be the subgroup of G generated by the commutators of pairs of elements of G. Prove that N is normal and the quotient G/N is abelian. Moreover, show that any homomorphism $G \to G'$ to an abelian group G' contains N in its kernel.
- 21. Assume that both H and K are normal subgroups of a group G and that $|H \cap K| = 1$. Prove that xy = yx for all $x \in H$ and $y \in K$. Hint: prove that $xyx^{-1}y^{-1} \in H \cap K$.
- 22. Find a nonabelian group G and a proper normal subgroup N such that G/N is abelian.