Math 501 Homework \#2, Fall 2023

Instructor: Ezra Miller
Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment...
Due: noon on Thursday 21 September 2023

Exercises

1. Determine the automorphism groups of the integers \mathbb{Z}, the symmetric group S_{3}, and the cyclic group C_{10}.
2. Find all subgroups of S_{3} and determine which are normal.
3. Given two homomorphisms φ and ψ from a group G to G^{\prime}, let $H \subseteq G$ be the subset ${ }^{/ 3}$ where φ and ψ agree: $H=\{x \in G \mid \varphi(x)=\psi(x)\}$. Is H a subgroup of G ?
4. Prove that the center of any group is a normal subgroup.
5. If $\varphi: G \rightarrow G^{\prime}$ is a surjective homomorphism and $N \unlhd G$ is a normal subgroup, prove ${ }^{/ 3}$ that the image $\varphi(N) \unlhd G^{\prime}$ is also a normal subgroup.
6. Is the intersection $R \cap R^{\prime}$ of two equivalence relations in $S \times S$ an equivalence relation on S ? Is the union?
7. Prove that every group whose order is a power of a prime p contains an element of order p.
8. Let \mathbb{F} be a field and W the solution set in \mathbb{F}^{n} of a system of homogeneous linear equations $A \mathbf{x}=\mathbf{0}$. Show that the solution set of any inhomogeneous system $A \mathbf{x}=\mathbf{b}^{/ 3}$ is a coset of W.
9. Prove that every index 2 subgroup is normal. Exhibit a non-normal index 3 subgroup.
10. Classify all groups of order 6 . Hint: is there an element of order 6 ? Of order 3 but not $/ 3$ of order 6 ? Or no element of order 3 ?
11. If G and G^{\prime} are finite groups whose orders are relatively prime, prove that there is a unique homomorphism $G \rightarrow G^{\prime}$.
12. Fix subgroups H and K of a group G. Prove that the intersection $x H \cap y K$ of cosets is either empty or else is a coset of $H \cap K$. Conclude that if H and K have finite index $/ 3$ in G then so does $H \cap K$.
13. Prove that a group of order 30 can have at most seven subgroups of order 5 .
14. Fix a surjective group homomorphism $\varphi: G \rightarrow G^{\prime}$ with kernel K. Show that the set ${ }^{/ 3}$ of subgroups of G containing K and the set of all subgroups of G^{\prime} are in bijection via ${ }^{/ 3}$ the map $H \mapsto \varphi(H)$. If $H \unlhd G$, must it be that $\varphi(H) \unlhd G^{\prime}$?
15. Is the symmetric group S_{3} a direct product of nontrivial groups?
16. Prove that the product of two infinite cyclic groups is not cyclic. Is the same true without the word "infinite"?
17. Fix a group G whose order is $|G|=a b$. Suppose that G has subgroups H and K with orders $|H|=a$ and $|K|=b$. Assume that $|H \cap K|=1$. Prove that $H K=G$. Is $G / 3$ isomorphic to the product group $H \times K$?
18. Suppose that a group G has a partition P with the property that for any pair of blocks A and B of the partition, the product $A B$ is contained entirely within a block of P. ${ }^{/ 3}$ Let N be the block that contains the identity e of G. Prove that $N \unlhd G$ and that P is the partition of G into the set of cosets of N.
19. Let $H=\{ \pm 1, \pm i\} \subset \mathbb{C}^{\times}$, the subgroup of fourth roots of unity. Describe the cosets of H in \mathbb{C}^{\times}explicitly (geometrically), and prove that $\mathbb{C}^{\times} / H \cong \mathbb{C}^{\times}$.
20. Fix a group G. Let $N=\left\langle x y x^{-1} y^{-1} \mid x, y \in G\right\rangle$ be the subgroup of G generated by the commutators of pairs of elements of G. Prove that N is normal and the quotient $G / N / 3$ is abelian. Moreover, show that any homomorphism $G \rightarrow G^{\prime}$ to an abelian group G^{\prime} contains N in its kernel.
21. Assume that both H and K are normal subgroups of a group G and that $|H \cap K|=1$. Prove that $x y=y x$ for all $x \in H$ and $y \in K$. Hint: prove that $x y x^{-1} y^{-1} \in H \cap K . \quad / 3$
22. Find a nonabelian group G and a proper normal subgroup N such that G / N is abelian.
