Math 501 Homework \#1, Fall 2023
 Instructor: Ezra Miller

Solutions by: ...your name...
Collaborators: ...list those with whom you worked on this assignment...
Due: noon on Thursday 7 September 2023

Exercises

1. Prove that set of invertible elements in any monoid is a group.
2. Solve for y given that $x y z^{-1} w=1$ in a group.
3. Assume that the equation $x y z=1$ holds in a group G. Does it follow that $y z x=1$? ${ }^{/ 3} / 3$ How about $y x z=1$?
4. Fix elements a and b in a group G. Show that the equation $a x=b$ has a unique solution in G.
5. Determine the elements of the cyclic group generated by the matrix $\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right]$ explicitly. $/ 3$
6. Let a and b be elements of a group G. Assume that a has order 5 and that $a^{3} b=b a^{3}$. Prove that $a b=b a$.
7. Prove that a nonempty subset H of a group G is a subgroup if for all $x, y \in H$ the element $x y^{-1}$ lies in H.
8. An $n^{\text {th }}$ root of unity is a complex number z such that $z^{n}=1$. Prove that the $n^{\text {th }}$ roots of unity form a cyclic subgroup of \mathbb{C}^{\times}of order n. More generally, show that every $/ 3$ finite subgroup of the multiplicative group of any field is cyclic.
9. Let H be the subgroup generated by two elements a and b of a group G. Prove that if $a b=b a$ then H is abelian.
10. Describe all groups that contain no proper subgroup. Describe all groups that contain no proper nontrivial subgroup.
11. Let G be a cyclic group of order n, and let r be an integer dividing n. Prove that G contains exactly one subgroup of order r.
12. Let G be a cyclic group of order 6 . How many of its elements generate G ? How about if G has order 5,8 , or 10 ? And the general case of order n ?
13. Prove that a group in which every element except the identity has order 2 is abelian.
14. How many elements of order 2 does the symmetric group S_{4} have? What about $S_{5} / 3$
or S_{6} ?
15. Prove that the set of elements of finite order in an abelian group is a subgroup. Find a group whose elements of finite order do not constitute a subgroup.
16. Let M be a finite monoid that satisfies the cancellation law. Prove that M is a group.
