Math 501 Homework #1, Fall 2023 Instructor: Ezra Miller

Solutions by: ...your name...

Collaborators: ...list those with whom you worked on this assignment...

Due: noon on Thursday 7 September 2023

	· · ·	
Ex	KERCISES	4
	1. Prove that set of invertible elements in any monoid is a group.	
	2. Solve for u given that $xuz^{-1}w=1$ in a group.	
;	3. Assume that the equation $xyz = 1$ holds in a group G . Does it follow that $yzx = 1$? How about $yxz = 1$?	
	4. Fix elements a and b in a group G . Show that the equation $ax = b$ has a unique solution in G .	
,	5. Determine the elements of the cyclic group generated by the matrix $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ explicitly. /3	
(6. Let a and b be elements of a group G. Assume that a has order 5 and that $a^3b = ba^3$. Prove that $ab = ba$.	
	7. Prove that a nonempty subset H of a group G is a subgroup if for all $x, y \in H$ the element xy^{-1} lies in H .	
	8. An n^{th} root of unity is a complex number z such that $z^n = 1$. Prove that the n^{th} roots of unity form a cyclic subgroup of \mathbb{C}^{\times} of order n . More generally, show that every /3 finite subgroup of the multiplicative group of any field is cyclic.	
	9. Let H be the subgroup generated by two elements a and b of a group G . Prove that if $ab = ba$ then H is abelian.	
1	0. Describe all groups that contain no proper subgroup. Describe all groups that contain no proper nontrivial subgroup.	
1	1. Let G be a cyclic group of order n , and let r be an integer dividing n . Prove that G contains exactly one subgroup of order r .	
1:	2. Let G be a cyclic group of order 6. How many of its elements generate G ? How about if G has order 5, 8, or 10? And the general case of order n ?	
1	3. Prove that a group in which every element except the identity has order 2 is abelian. $/3$	
1	4. How many elements of order 2 does the symmetric group S_4 have? What about S_5 /3 or S_6 ?	
1	5. Prove that the set of elements of finite order in an abelian group is a subgroup. Find a group whose elements of finite order do not constitute a subgroup. $/3$	
1	6. Let M be a finite monoid that satisfies the cancellation law. Prove that M is a group.	