<u>Pf of Prop1</u>: $M_{tor} = \ker(M \rightarrow M_{\odot})$, where $M_{\sharp} = S^{-1}M$ for $S = \mathbb{R} \setminus \mathfrak{p}$. Suffices: $E = im(M \rightarrow M_{(0)})$ is free, since then $0 \rightarrow M_{tor} \rightarrow M \rightarrow E \rightarrow 0$ splits. Why is rank F well defined? Because $F \stackrel{\sim}{\sim} M/M_{tor}!$ Will prove $E \subseteq f.g.$ free submodule of $M_{(o)}$, so Thm p. (1) applies. $M = \langle m_1, ..., m_k \rangle \Rightarrow M_{\langle 0 \rangle} = \operatorname{span}_{R_{ob}} \{ \frac{m_1}{1}, ..., \frac{m_k}{1} \} \text{ over } R_{\langle 0 \rangle} = K(R) = \text{field.}$ $E = \langle \frac{m_1}{1}, \dots, \frac{m_k}{1} \rangle$ over R. Choose basis $x_1,...,x_n$ for $M_{(0)}$. Let $a \in \mathbb{R}$ be \mathbb{T} (all denominators in coeffs on $x_1, ..., x_n$ in $\frac{m}{1}, ..., \frac{m}{1}k$). Then $E \subseteq R^{\frac{\chi_1}{a}} \oplus \cdots \oplus R^{\frac{\chi_n}{a}}$. Ex: rank M = n.<u>Lemma</u>: $M(p) = \ker(M \rightarrow M[p^{-1}])$. <u>Lemma</u>: If $M = M_{tor}$ then $M(p) \hookrightarrow M$ induces an isomorphism $M(p)_{(p)} \xrightarrow{\sim} M_{(p)}$. Pf: Need -> by HW5 #9b. But $\frac{x}{a} \in M_{(p)} \Rightarrow p^n \frac{x}{a} = 0$ since $M_{(p)}$ is torsion and $R_{(p)}$ has just one prime $\neq \langle 0 \rangle$ local+PID \Rightarrow bpⁿx = 0 for some $b \notin \langle p \rangle$ \Rightarrow bx ϵ M(p) $\Rightarrow \frac{x}{a} = \frac{bx}{ab} \epsilon M(p)_{(p)}. \quad \Box$ $\underline{\mathsf{Lemma}} \colon \mathsf{p}^{\mathsf{n}} \mathsf{N} = \mathsf{O} \ \Rightarrow \ \mathsf{N} \ \xrightarrow{\sim} \ \mathsf{N}_{\langle \mathsf{p} \rangle} \,.$ Pf: $p^n N = 0 \Rightarrow N$ is a module over $R/\langle p^n \rangle$. Write $R \xrightarrow{a} R/\langle p^n \rangle$. Then $\overline{r} \in (R/\langle p^n \rangle)^* \quad \forall \quad r \notin \langle p^n \rangle$, since $\langle r, p^n \rangle = 1$. Hence, if $S = R \setminus \langle p \rangle$ then $N_{\langle p \rangle} = S^{-1}N = S^{-1}RN = S^{-1}R/\langle p^n \rangle N = R/\langle p^n \rangle N = N$. <u>Pf of Prop 2</u>: $M(p) \neq 0 \Rightarrow \exists 0 \neq x_p \in M(p)$ with $px_p = 0$. Thus $\langle x_p | M(p) \neq 0 \rangle$ f.g. by Cor p. (17), so M(p) = 0 for almost all p. This is crucial; like finiteness of rank, it is a key place where f.g. is used $\mathsf{Lemmas} \ \Rightarrow \ \mathsf{M}(\mathsf{p}) \ \rightarrow \ \mathsf{M}_{\langle \mathsf{p} \rangle} \ = \ \mathsf{M}(\mathsf{p})_{\langle \mathsf{p} \rangle} \ = \ \mathsf{M}(\mathsf{p}) \ \Rightarrow \ \mathsf{M}(\mathsf{p}) \ \stackrel{\boldsymbol{\sim}}{\longrightarrow} \ \mathsf{M}_{\langle \mathsf{p} \rangle} \ \forall \, \mathsf{p}.$ But $M(q)_{(p)} = 0 \quad \forall (q) \neq (p)$. Thus $M \to \prod_{p} M_{\langle p \rangle} = \prod_{p} M_{\langle p \rangle} = \bigoplus_{p} M_{\langle p \rangle}$ becomes \cong locally at every $\langle p \rangle$.

Nakayama's Lemma: Fix local ring A with maximal ideal & and f.g. A-module N. Then $N = \mu N \Rightarrow N = 0$. $\underline{Pf} \colon \mathbb{N} = \langle x_1, ..., x_n \rangle \implies x_1 = \sum_{i=1}^n a_i x_i \quad \text{with } a_i \in \mathbb{P} \quad \forall i$ $\Rightarrow (1-a_1) x_1 = \sum_{i=1}^{n} a_i x_i \quad \text{with } a_i \in \mathcal{P} \quad \forall i$ $\epsilon \land \backslash \sharp = A^*$ $\Rightarrow x_1 \in \langle x_2, ..., x_n \rangle$. Done by induction (n = 0 trivial). \square Nakayama's Lemma: (A, x) local ring with f.g. A-module M. Write $M \rightarrow M/\mu M$ $\chi \mapsto \overline{\chi}$ Assume $M/\mu M = \langle \overline{x}_1, ..., \overline{x}_n \rangle$. Then $M = \langle x_1, ..., x_n \rangle$. N is a set of cosets; <u>Pf</u>: Apply previous to $N = M(x_1,...,x_n)$, so $AN = AM + (x_1,...,x_n)$ so is AN $0 = \#M + \langle x_1, ..., x_n \rangle / M + \langle x_1, ..., x_n \rangle = M + \langle x_1, ..., x_n \rangle$ again, a set of cosets • = N. □ E.g. $x_1,...,x_n$ basis of $F \Leftrightarrow \overline{x}_1,...,\overline{x}_n$ basis of $F/\mu F$. <u>Prop 3</u>: Assume R local PID with $\langle p \rangle$ maximal and M f.g. with $p^eM=0$. If $0 \to K \to F \to M \to 0$ is exact with $F \cong \mathbb{R}^n$, then F has a basis f,,...,fn such that $p^{e_1}f_1,...,p^{e_n}f_n$ is a basis of K for some $e_1,...,e_n \in \mathbb{N}$. \underline{Pf} : $F/pF \rightarrow M/pM$. F has basis $B = B' \cup B''$ with $B'' \leftrightarrow basis \overline{B}''$ for M/pM. Using B", assume $F/pF \xrightarrow{\sim} M/pM$, so $pF \supseteq K$ because $K \xrightarrow{} F \xrightarrow{} M \xrightarrow{} M/pM$. e = 1: Any basis of F will do, since $F/pF \xrightarrow{\sim} M = M/pM$. $e \ge \lambda$: pF/K = pM is killed by p^{e-1}. Induction \Rightarrow choose basis $g_1,...,g_n$ of pF with pe,-1g,,...,pen-1gn basis of K. $g_i \in pF \implies g_i = pf_i$ for some (unique) $f_i \in F$, so $p^{e_i}f_i = p^{e_{i-1}}g_i$. Nakayama \Rightarrow f,,...,fn basis of F. \square

course evals