Localization

<u>Def</u>: $S \subseteq R$ is a <u>multiplicative subset</u> if S is a submonoid of (R, \cdot) .

 \cdot 1 \in S and

· xy & S \ X,y & S

The ring of fractions is

$$S^{-1}R = R[S^{-1}] = R \times S/\sim$$

where the class of (a,s) is denoted $\frac{a}{s}$

and $\frac{a}{S} = \frac{a'}{S'}$ if $\exists t \in S$ with t(s'a - sa') = 0.

s'a - sa' is annihilated by something that's supposed to be a unit.

Note: $\frac{a}{S} = \frac{a'}{S'}$ and $\frac{a'}{S'} = \frac{a''}{S''}$ \Rightarrow s''t't(s'a - sa') = 0 = -stt'(s''a' - s'a'')

$$\Rightarrow$$
 s't't(s"a - sa") = 0

⇒ ~ is transitive symmetric and reflexive; easy

Prop: $R[S^{-1}]$ is a ring with $\frac{a}{S} \cdot \frac{b}{t} = \frac{ab}{St}$ and $\frac{a}{S} + \frac{b}{t} = \frac{ta + bs}{St}$.

 $\underline{Pf}: e.g. \ \underline{a} = \underline{a'} \Rightarrow u(s'a - sa') = 0$

$$\Rightarrow u(\underline{s't}\underline{ab} - \underline{a'bst}) = 0$$

$$\Rightarrow \frac{ab}{St} = \frac{a'b}{S't}$$
, \Box

 $\underline{Cor}: R \to R[S^{-1}]$ is a ring homomorphism.

 $a \mapsto \frac{a}{1}$

Q. $R = \mathbb{R}[x,y]/\langle xy \rangle \Rightarrow \ker(R \to R[x^{-1}]) = \chi(y)$ stuff annihilated by something that's supposed to be a unit!

<u>E.g.</u> 1. $S = R^* \Rightarrow R[S^{-1}] = R$. We'll see why shortly, with the universal property

2. R integral domain and $S = R \setminus \{0\}$

$$e.q.$$
 $R = \mathbb{Z} \Rightarrow K(R) = Q$

 $R = \mathbb{k}[x_1, ..., x_n] \Rightarrow \mathbb{K}(R) = \mathbb{k}(x_1, ..., x_n) \quad \underline{\text{field of rational functions}} \text{ in } x_1, ..., x_n \text{ over } \mathbb{k}$

3. $\neq \subseteq R$ prime ideal and $S = R \setminus \neq R$

$$\Rightarrow$$
 S⁻¹R $\stackrel{\text{def}}{=}$ R_p, the localization of R at p #2: p = 0

Rp is a <u>local ring</u>: it has a unique maximal ideal <u>Pf</u>: Exercise

4.
$$S = \{1, t, t^{2}, ...\}$$

$$\Rightarrow S^{-1}R = R[S^{-1}] \stackrel{\text{def}}{=} R_{t}$$
 $\ker(R \to R_{t}) = ? \stackrel{\alpha}{=} = \stackrel{n}{1} \Leftrightarrow ua = 0 \text{ for some } u \in S$

$$\Leftrightarrow t^{d}a = 0 \text{ for some } d \in \mathbb{N}$$

e.g. $R = |k[x,y]/\langle xy\rangle \Rightarrow R = |k\{1, x, x^{2}, ..., y, y^{2}, ...\}$

basis as vector space /|k|

 $x^{d}f(x,y) = 0 \text{ for some } d \in \mathbb{N} \Leftrightarrow xy \mid x^{d}f(x,y)$

$$\Leftrightarrow y \mid f(x,y)$$

$$\Rightarrow \ker(R \to R[x^{-1}]) = \langle y \rangle$$

<u>Prop</u>: {prime ideals of $S^{-1}R$ } \leftrightarrow {prime ideals $p \subseteq R$ with $p \cap S = \emptyset$ } 15-1R ← 1

the point: $I \subseteq R$ remains a proper ideal \Leftrightarrow I has no element that becomes a unit <u>Pf</u>:

Prop: Let $C = \text{category of ring homomorphisms} R \xrightarrow{f} A$ such that $f(s) \in A^* \ \forall \ s \in S$.

Then $R \to S^- R$ is universally repelling in C: $R \to A$ $R \to A$ $R \to A$

 \underline{Pf} : Let $f: R \to A$ be an object in \mathcal{C} .

Define $f_*: S^{-1}R \to A$ by $\frac{a}{s} \mapsto f(a)f(s)^{-1}$ uses $f(s) \in A^*$

Then $\frac{a}{S} = \frac{a'}{S'} \implies t(s'a - sa') = 0$ for some $t \in S$ $\Rightarrow (f(t)(f(s')f(a) - f(s)f(a')) = 0) \cdot f(t)^{-1}f(s')^{-1}f(s')^{-1}$ $\Rightarrow f(a)f(s)^{-1} - f(\alpha')f(s')^{-1} = 0,$

so f* is well defined.

Exercise: f* · is a ring homomorphism and · makes the diagram commute. this is by def.

 f_* is unique because it is determined by where it sends R. \square $\underline{Cor}: R[(R^*)^{-1}] = R.$

<u>Pf</u>: Any ring homomorphism $R \rightarrow A$ factors through $R \stackrel{id}{\rightarrow} R$, so $R \xrightarrow{id} R$ satisfies the universal property. \square