PID and UFD

Fix a commutative integral domain R.

<u>Def</u>: $a \in R$ is <u>irreducible</u> if $a = bc \Rightarrow b \in R^*$ or $c \in R^*$ but not both.

$$\langle a \rangle = \langle c \rangle$$
 or $\langle a \rangle = \langle b \rangle$

<u>Lemma</u>: $\langle p \rangle$ prime \Rightarrow p irreducible.

 \underline{Pf} : $p = ab \Rightarrow a \in \langle p \rangle$ or $b \in \langle p \rangle$; say $a \in \langle p \rangle$.

Then a = pc, so p = ab = pcb

 \Rightarrow cb = 1 since R is entire.

<u>Def</u>: $a \mid b$ if ac = b for some $c \in \mathbb{R}$.

 $b \in \langle a \rangle$

 $d \in \mathbb{R} \setminus \{0\}$ is a gcd of a and b if

· dla and dlb

• cla and clb \Rightarrow cld.

<u>Def</u>: R (a commutative integral domain) is a <u>PID</u> if every ideal is principal.

<u>Prop</u>: In a PID, $\langle a,b \rangle = \langle d \rangle \Rightarrow d$ is a gcd of a and b.

Pf: Let $d = Aa + \beta b$ and suppose a = ex and b = ey.

Then $d = xex + \beta ey$

$$= e(\chi x + \beta y) \Rightarrow e \mid d.$$

But dla and dlb because a,b \in $\langle d \rangle$. \square

 $\underline{Cor}: \langle p \rangle$ prime $\leftarrow p$ irreducible if R is a PID.

Pf: plab and pla $\Rightarrow \langle p,a \rangle = \langle d \rangle \not\supseteq \langle p \rangle$

 \Rightarrow d $\in \mathbb{R}^*$ since p is irreducible may as well take d = 1

$$\Rightarrow 1 = xp + ya$$

$$\Rightarrow b = xpb + yab$$

$$\Rightarrow P \mid b$$
. \square

<u>Def</u>: R (a commutative integral domain) is <u>factorial</u> (or a <u>UFD</u>) unique factorization domain (38)

if every reR1{0} factors uniquely into irreducible elements:

 $r = u_{P_1} \cdots P_k$ with $u \in \mathbb{R}^*$ and

 $r = vq_1 \cdots q_\ell$ with $v \in \mathbb{R}^* \implies k = \ell$ and $q_i = u_i p_i$ for some $u_i \in \mathbb{R}^*$ after permuting the q_i .

 $\underline{\mathsf{Thm}}\colon \mathsf{PID} \Rightarrow \mathsf{UFD}.$

Pf: Claim: Every re R factors into irreducibles. no uniqueness yet

Pf: Let $S = \{\langle r \rangle \subseteq R \mid r \text{ doesn't factor into irreducibles} \}$.

Assume $S \neq \emptyset$. Then S has a maximal element $\langle r \rangle$ because

• every chain $\langle r_i \rangle \subseteq \langle r_j \rangle \subseteq \cdots$ yields an ideal $\langle b \rangle = \langle r_i \rangle \cup \langle r_j \rangle \cup \cdots$

• $b \in \langle r_n \rangle$ for some $n \Rightarrow \langle b \rangle \subseteq \langle r_n \rangle \subseteq \langle b \rangle$

 \Rightarrow $\langle b \rangle = \langle r_n \rangle \in S$ is an upper bound.

Note: r is reducible since $r \in S$, so r = cd with $c, d \notin R^*$.

But then $\langle r \rangle \subsetneq \langle c \rangle$ and $\langle r \rangle \subsetneq \langle c \rangle$, so

c and d have factorizations. Hence r does, too.

Thus $S = \emptyset$. \square

 $r = up_1 \cdots p_k = vq_1 \cdots q_\ell \Rightarrow p_k$ prime by Cor

 $\Rightarrow \rho_k | q_i$ for some i; assume $i = \ell$ by permutation

 $\Rightarrow \rho_k = u_k q_\ell$ with $u_k \in \mathbb{R}^*$ since q_ℓ is irreducible

 \Rightarrow up,...p_{k-1} = $vu_kq_1...q_{\ell-1}$ because R is entire.

Done by induction.

 $\underline{E.q.} \cdot R = \mathbb{Z}$

PID by Euclidean algorithm next week

 $\cdot R = k[x]$

• Thm: R factorial \Rightarrow R[x] is, too \Rightarrow Z[x1,...,xn], k[x1,...,xn] UFD

· k[x] formal power series is UFD; one variable \Rightarrow PID

 $\cdot k[x^a, x^3]$ not UFD

· ℤ[√-5] <u>not</u> UFD