(35)

```
Ideals
```

Q. What does ker (f: $A \rightarrow B$) look like?

no adjective

default: "ideal" means 2-sided

 $\underline{E.g.} \cdot \text{any } A \Rightarrow I = \{0\} \text{ is a-sided}$

•
$$M_{2}(|k|) \ge \begin{bmatrix} 0 & * \\ 0 & * \end{bmatrix}$$
 left, but not right

 $\underline{\mathrm{Def}}: a \in A \Rightarrow Aa = \underline{\mathrm{principal left ideal}}$

general: $Aa_1 + \cdots + Aa_n = left$ ideal generated by $a_1, \dots, a_n \in A$

$$Aa_1A + \cdots + Aa_nA = ideal$$
 = $\langle a_1, ..., a_n \rangle$

<u>E.g.</u> {polynomials with even constant term} = $\langle 2, x \rangle \subseteq \mathbb{Z}[x]$

Q. Why ideals?

<u>Prop</u>: $f: A \rightarrow B$ ring homomorphism \Rightarrow ker f is an ideal.

$$\underline{Pf}$$
: $f(a) = 0 \Rightarrow f(bab') = 0 \quad \forall b,b' \in A$.

In fact:

 $\underline{\mathsf{Thm}} \colon \underline{\mathsf{I}} \subseteq \mathsf{A}$ is an ideal $\Leftrightarrow \exists \mathsf{ring} \mathsf{ homomorphism} \ \mathsf{f} \colon \mathsf{A} \to \mathsf{B}$ with $\underline{\mathsf{I}} = \mathsf{ker} \ \mathsf{f} .$

 $\underline{\mathsf{Pf}}$: \Leftarrow : Prop.

 \Rightarrow : I \subseteq A ideal \Rightarrow A/I is a ring with (x+I)(y+I) = xy + I

quotient ring = quotient abelian group

i.e. $a \in x + I$ and $b \in y + I \Rightarrow ab \in xy + I$

Why? Because $xI + Iy + I^2 \subseteq I!$

 $\frac{\text{Thm (Universal property):}}{\exists ! \ \overline{\psi}} \Rightarrow \exists ! \ \Psi_* : A/\underline{I} \to B \text{ with } \Psi = \overline{\Psi} \circ \pi.$

 \underline{Pf} : True for $(A,+) \rightarrow (B,+)$. The claim: Ψ_* is already a ring homomorphism:

$$\Psi_*(\pi(x) \pi(y)) = \Psi_*(\pi(xy)) = \Psi(xy)$$

$$= \Psi(x) \Psi(y) = \Psi_*(\pi(x)) \Psi_*(\pi(y)). \quad \Box$$

 $\Rightarrow \|\mathbb{Z}/_{m}\mathbb{Z})^{*}\| \cong \|\prod_{i=1}^{m} \mathbb{Z}/\rho_{i}^{e_{i}}\mathbb{Z})^{*}\|$ Euler $\Psi \text{ function } \Rightarrow \Psi(m) = \prod_{i=1}^{n} \Psi(\rho_{i}^{e_{i}}) = \prod_{i=1}^{m} (\rho_{i} - 1)\rho_{i}^{e_{i}-1}. \quad \Box$

In particular, $m = p_1^{e_1} \cdots p_n^{e_n}$ factorization into distinct primes