\Rightarrow (*) again $\Rightarrow \pi \notin H$

⇒ |H| = 1. □

Def: A composition series of a group G is a chain

$$1 = G_o \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_{l-1} \trianglelefteq G_{\downarrow} = G \quad \text{such that } G_i / G_{i-1} \text{ is simple } \forall i = 1, \dots, l.$$

composition factor \overline{G}_i

$$\underbrace{F.g.} \cdot 1 \trianglelefteq A_{n} \trianglelefteq S_{n} \quad \forall n \geqslant 5 \Rightarrow \overline{G}_{1} = A_{n} \text{ and } \overline{G}_{1} = ? C_{2}$$

$$\underbrace{(1 \trianglelefteq C_{2} \trianglelefteq V_{4} \trianglelefteq A_{4} \trianglelefteq S_{4})}_{\downarrow 1} \Rightarrow \underbrace{\overline{G}_{1}}_{i} = C_{2}, C_{2}, C_{3}, C_{3}$$

<u>Jordan - Hölder Thm</u>: All composition series of finite G yield the same isomorphism classes and multiplicities of $\overline{G}_1, \ldots, \overline{G}_\ell$ up to permutation.

<u>Def</u>: G is <u>solvable</u> if $|\overline{G}_i|$ is prime \forall i. "solvable" has roots in Galois theory

<u>E.g.</u> S_n is solvable if $n \le 4$ but not if $n \ge 5$. How to tell if G is solvable?

Prop: Set $G' = [G,G] = \langle xyx^{-1}y^{-1} | x,y \in G \rangle$ commutator subgroup and $G = G^{\circ} \geqslant G^{1} \geqslant \cdots \geqslant G^{i} \geqslant \cdots$ with $G^{i+1} = (G^{i})'$, the <u>derived series</u> of G.

Then finite G is solvable \Leftrightarrow $G^m = \{1\}$ for some m.

Pf: Lemma: G/N is abelian $\Leftrightarrow N \ge [G,G]$.

Pf: $\chi_{y}\chi^{-1}y^{-1} \in N \ \forall \ \chi_{,y} \in G$.

←: Refine the derived series.

⇒: Need $G^i \neq \{1\} \Rightarrow (G^i)' \neq G^i$. Jordan - Hölder $\Rightarrow G^i$ has an abelian quotient $C_p = G^i / H$ $\Rightarrow G^i \neq H \geqslant (G^i)'$. \square

Q. What do all composition series look like, together in G?

A. The <u>subgroup lattice</u> of G is $\Lambda(G)$ = poset of all subgroups of G.

 $\frac{E.g.}{\langle (12)(34)\rangle \langle (13)(24)\rangle \langle (14)(23)\rangle \langle (124)\rangle \langle (134)\rangle \langle$

Q. $N \leq G \Rightarrow \Lambda(G/N) = ?$ A. $\{\overline{H} \leq \overline{G} \mid N \leq H \leq G\}$, where means /N

and $\overline{H} \supseteq \overline{G} \Leftrightarrow H \supseteq G$

 $\underline{Ex}: N \leq H \leq G$ with $N \leq G \Rightarrow G/H \leftrightarrow \overline{G}/\overline{H} \cong if H \leq G$ one of the isomorphism theorems