12. Class eqn for I: 60 = 1+15+20+12+12 $\frac{\chi}{\text{face f}}$ 3 $\frac{\chi}{20/2}$ = 10 $\frac{\chi}{\text{all conjugate, since}}$
1 30% - 152 T + 4 + 15 mly
$\frac{ q }{1} = \frac{1}{1}$ vertex $\frac{ q }{5} = \frac{1}{1}$ $\frac{ q }{2} = 6$ faces, edges, and verting antipodal pairs
$ \lambda \ge 15$ all I_e conjugate $\Rightarrow 15$
3 $ > 10 \cdot 2 = 20$ " I_f " $\Rightarrow 20 = 20$ or $10 + 10$. But $I_f = \{1, h, h^2\} \Rightarrow h = \frac{2\pi}{3}$ rotation around po
$5 \Rightarrow 6 \cdot 4 = 24 \text{Similarly, } I_{v} = \{1, q, q, q, q, q^{3}\} \Rightarrow 24 = (2 + 12) \Box \qquad \Rightarrow h^{2} = \qquad \text{pol}$ $\Rightarrow h \sim h^{2}.$
But $1+15+20+24=60$, so that's all. Conjugate elements have equal order,
Q. Why isn't this the class egn? so class equation refines this sum.
A. 24 ≠ 60
<u>Actions on subsets</u>
$G C X \Rightarrow G C a^X = \{ subsets of X \}$
U ⊆ X ⇒ qU = {qu u ∈ U} same size as U
$\Rightarrow G^{C}(\frac{1}{4}) = \{U \subseteq X \mid U = 4\}$
E.g. $G = \text{octahedral group } C \implies GCX = \{\text{vertices of } C\}$
$\begin{pmatrix} X \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 2 \end{pmatrix} = 28$ pairs of vertices
3 orbits: $O_1 = pairs$ of vertices on an edge $\# = 12$
$\cdot \mathcal{O}_{2} =$ " a face diagonal # = $6 \cdot 2 = 12$
$0_3 = 0$ body diagonal $0 = 8/2 = 4$ $0 = 12+12+4$
Note again: $gU = U \Rightarrow g$ permutes U : not $gu = u$ but $gu \in u$
Lemma: If HCX and $U\subseteq X$ then H stabilizes U ($H_U=H$) \Leftrightarrow U is a union of H -orbits.
\underline{Pf} : H stabilizes $U \Leftrightarrow \mathcal{O}_u = Hu \subseteq U \forall u \in U$. \square
Prop: Let GCG by left multiplication. Then Gul U
\underline{Pf} : Set $H = G_u$. Lemma $\Rightarrow U = \bigcup_{i \in I} \underbrace{H\text{-orbits}}_{i \in I}$.
$\Rightarrow \mathcal{U} = \sum \mathcal{O} = k H $. \Box
H-orbits O

 $\frac{Cor}{gcd(|U|,|G|)} = 1 \implies G_{U} = \{1\}.$ $\underline{Pf}:|G_{U}| ||G| \quad and \quad |G_{U}| ||U|. \quad \Box$

ſ

E.g. G.C.G by conjugation.
$$H \leq G \Rightarrow G_H$$
 is the normalizer

$$N_G(H) = \{g \in G \mid gHg^{-1} = H\}.$$
subscepts conjugate to $G = G \setminus M(H)$

subgroups conjugate to
$$H = \frac{|G|}{|N(H)|} |N(H)|$$

$$= [G:N(H)].$$

<u>Notes</u>: • $H ext{ } ext{ }$ $\cdot N_G(H) = G \Leftrightarrow H \trianglelefteq G.$

The Sylow theorems

Fix group G and prime p with $|G| = p^e m$ and p \text{ m. Assume } e \geq 1.

First Sylow Thm: G has a subgroup of order pe. Sylow p-subgroup (proofs next time

Cor: G has an element of order p.

<u>Pf</u>: Let H be a Sylow p-subgroup and $1 \neq g \in H$.

$$|q| = p^r$$
 for some $r \le e \Rightarrow |q^{p^{r-1}}| = p$, \square

<u>Second Sylow thm</u>: Let K ≤ G with p | K | and H ≤ G a Sylow p-subgroup.

Then (gHg') nK is a Sylow p-subgroup of K for some geG.

<u>Cor</u>: 1. $K \le G$ is a p-group $\Rightarrow K \le some$ Sylow p-subgroup of G.

2. All Sylow p-subgroups of G are conjugate.

<u>Pf</u>: 1. Pick H as in Sylow 2. Then $K \leq gHg^{-1}$ by def.

But gHg-1 is a Sylow p-subgroup of G.

2. Part 1 + $K = gHg^{-1}$ if $|K| = |gHg^{-1}|$. \square

Third Sylow Thm: Let s = #Sylow p-subgroups of G, where $|G| = p^e m$.

Then $s \mid m$ and $s \equiv 1 \pmod{p}$.

$$\underline{E.g.} |G| = 15 \Rightarrow G \cong C_{15} \qquad n = 15 = 3.5$$

p = 3, m = 5: $s \mid 5$ and $s \equiv 1 \pmod{3}$.

 \Rightarrow S = 1 \Rightarrow Sylow 3-subgroup $H \triangleleft G$ se{1,5}

p=5, m=3: $s\mid 3$ and $s\equiv 1 \pmod{5}$. $\Rightarrow S=1$ $\Rightarrow Sylow 5-subgroup <math>K \triangleleft G$

HW2 #21 > Gabelian

 $\Rightarrow G \cong C_1 \times C_5 \cong C_{15}$.